Archive for the ‘Health’ Category

Researchers at The University of Auckland have shown for the first time that the mere presence of carbohydrate solution in the mouth immediately boosts muscle strength, even before it is swallowed.

The results suggest that a previously unknown neural pathway is activated when receptors in the mouth detect carbohydrate, stimulating parts of the brain that control muscle activity and producing an increase in muscle strength.

Previous research had shown that the presence of carbohydrate in the mouth can improve physical performance during prolonged activity, but the mechanism involved was not known and it was unclear whether a person must be fatigued for the effect to be seen.

“There appears to be a pathway in the brain that tells our muscles when energy is on the way,” says lead researcher Dr Nicholas Gant from the Department of Sport and Exercise Science.

“We have shown that carbohydrate in the mouth produces an immediate increase in neural drive to both fresh and fatigued muscle and that the size of the effect is unrelated to the amount of glucose in the blood or the extent of fatigue.”

The current research has been published in the journal Brain Research and has also captured the attention of New Scientist magazine.

In the first of two experiments, 16 healthy young men who had been doing biceps exercises for 11 minutes were given a carbohydrate solution to drink or an identically flavored energy-free placebo. Their biceps strength was measured before and immediately afterward, as was the activity of the brain pathway known to supply the biceps.

Around one second after swallowing the drink, neural activity increased by 30 percent and muscle strength two percent, with the effect lasting for around three minutes. The response was not related to the amount of glucose in the bloodstream or how fatigued the participants were.

“It might not sound like much, but a two percent increase in muscle strength is enormous, especially at the elite level. It’s the difference between winning an Olympic medal or not,” says co-author Dr Cathy Stinear.

As might be expected, a second boost in muscle strength was observed after 10 minutes when carbohydrate reached the bloodstream and muscles through digestion, but no additional boost in neural activity was seen at that time.

“Two quite distinct mechanisms are involved,” says Dr Stinear. “The first is the signal from the mouth via the brain that energy is about to be available and the second is when the carbohydrate actually reaches the muscles and provides that energy,” says Dr Stinear.

“The carbohydrate and placebo solutions used in the experiment were of identical flavor and sweetness, confirming that receptors in the mouth can process other sensory information aside from the basic taste qualities of food. The results suggest that detecting energy may be a sixth taste sense in humans,” says Dr Gant.

In the second experiment, 17 participants who had not been doing exercise and were not fatigued simply held one of the solutions in their mouths without swallowing. Measurements of the muscle between the thumb and index finger were taken while the muscle was either relaxed or active.

A similar, though smaller effect was observed as in the first experiment, with a nine percent increase in neural activity produced by the carbohydrate solution compared with placebo. This showed that the response is seen in both large powerful muscles and in smaller muscles responsible for fine hand movements.

“Together the results show that carbohydrate in the mouth activates the neural pathway whether or not muscles are fatigued. We were surprised by this, because we had expected that the response would be part of the brain’s sophisticated system for monitoring energy levels during exercise,” says Dr Stinear.

“Seeing the same effect in fresh muscle suggests that it’s more of a simple reflex – part of our basic wiring – and it appears that very ancient parts of the brain such as the brainstem are involved. Reflexive movements in response to touch, vision and hearing are well known but this is the first time that a reflex linking taste and muscle activity has been described,” she says.

Further research is required to determine the precise mechanisms involved and to learn more about the size of the effect on fresh versus fatigued muscle.

———————————–

Article adapted by MD Sports from original press release.
———————————–
Contact: Pauline Curtis
The University of Auckland

Women who walked two or more hours a week or who usually walked at a brisk pace (3 miles per hour or faster) had a significantly lower risk of stroke than women who didn’t walk, according to a large, long-term study reported in Stroke: Journal of the American Heart Association.

The risks were lower for total stroke, clot-related (ischemic) stroke and bleeding (hemorrhagic) stroke, researchers said.

Compared to women who didn’t walk:

  • Women who usually walked at a brisk pace had a 37 percent lower risk of any type of stroke and those who walked two or more hours a week had a 30 percent lower risk of any type of stroke.
  • Women who typically walked at a brisk pace had a 68 percent lower risk of hemorrhagic stroke and those who walked two or more hours a week had a 57 percent lower risk of hemorrhagic stroke.
  • Women who usually walked at a brisk pace had a 25 percent lower risk of ischemic stroke and those who usually walked more than two hours a week had a 21 percent lower risk of ischemic stroke — both “borderline significant,” according to researchers.

“Physical activity, including regular walking, is an important modifiable behavior for stroke prevention,” said Jacob R. Sattelmair, M.Sc., lead author and doctoral candidate in epidemiology at Harvard School of Public Health in Boston, Mass. “Physical activity is essential to promoting cardiovascular health and reducing risk of cardiovascular disease, and walking is one way of achieving physical activity.”

More physically active people generally have a lower risk of stroke than the least active, with more-active persons having a 25 percent to 30 percent lower risk for all strokes, according to previous studies.

“Though the exact relationship among different types of physical activity and different stroke
subtypes remains unclear, the results of this specific study indicate that walking, in particular, is associated with lower risk of stroke,” Sattelmair said.

Researchers followed 39,315 U.S. female health professionals (average age 54, predominantly white) participating in the Women’s Health Study. Every two to three years, participants reported their leisure-time physical activity during the past year — specifically time spent walking or hiking, jogging, running, biking, doing aerobic exercise/aerobic dance, using exercise machines, playing tennis/squash/racquetball, swimming, doing yoga and stretching/toning. No household, occupational activity or sedentary behaviors were assessed.

They also reported their usual walking pace as no walking, casual (about 2 mph), normal (2.9 mph), brisk (3.9 mph) or very brisk (4 mph).

Sattelmair noted that walking pace can be assessed objectively or in terms of the level of exertion, using a heart rate monitor, self-perceived exertion, “or a crude estimate such as the ‘talk test’ – wherein, for a brisk pace, you should be able to talk but not able to sing. If you cannot talk, slow down a bit. If you can sing, walk a bit faster.”

During 11.9 years of follow-up, 579 women had a stroke (473 were ischemic, 102 were hemorrhagic and four were of unknown type).

The women who were most active in their leisure time activities were 17 percent less likely to have any type of stroke compared to the least-active women.

Researchers didn’t find a link between vigorous activity and reduced stroke risk. The reason is unclear, but they suspect that too few women reported vigorous activity in the study to get an accurate picture and/or that moderate-intensity activity may be more effective at lowering blood pressure as suggested by some previous research.

Stroke is the third leading cause of death and a leading cause of serious disability in the United States, so it’s important to identify modifiable risk factors for primary prevention, Sattelmair said.

An inverse association between physical activity and stroke risk is consistent across genders. But there tend to be differences between men and women regarding stroke risk and physical activity patterns.

“The exact relation between walking and stroke risk identified in this study is not directly generalizable to men,” Sattelmair said. “In previous studies, the relation between walking and stroke risk among men has been inconsistent.”

The study is limited because it was observational and physical activity was self-reported. But strengths are that it was large and long-term with detailed information on physical activity, he said.

Further study is needed on more hemorrhagic strokes and with more ethnically diverse women, Sattelmair said.

The American Heart Association recommends for substantial health benefits, adults should do at least 150 minutes a week of moderate-intensity or 75 minutes a week of vigorous-intensity aerobic physical activity or a combination.

———————————–
Article adapted by MD Sports from original press release.
———————————–
Contact: Birdgette McNeill
American Heart Association

Duke University Medical Center researchers have identified the skeletal muscle changes that occur in response to endurance exercise and have better defined the role of vascular endothelial growth factor (VEGF) in creating new blood vessels, known as angiogenesis, in the process.

VEGF is a protein known to trigger blood vessel growth by activating numerous genes involved in angiogenesis.
The researchers’ new insights could provide a roadmap for medical investigators as they seek to use VEGF in treating human conditions characterized by lack of adequate blood flow, such as coronary artery disease or peripheral arterial disease.
Using mice as animal models, the researchers found that exercise initially stimulates the production of VEGF, which then leads to an increase in the number of capillaries within a specific muscle fiber type, ultimately leading to an anaerobic to aerobic change in the muscle fibers supplied by those vessels. The VEGF gene produces a protein that is known to trigger blood vessel growth.
The results of the Duke experiments were presented by cardiologist Richard Waters, M.D., Nov. 8, 2004, at the American Heart Association’s annual scientific sessions in New Orleans.
“It is known that exercise can improve the symptoms of peripheral arterial disease in humans and it has been assumed that angiogenesis played a role in this improvement,” Waters said. “However, the clinical angiogenesis trials to date utilizing VEGF have been marginally successful and largely disappointing, so we felt it would be better at this point to return to animal studies in an attempt to better understand the angiogenic process.”
The Duke team performed their experiments using a mouse model of voluntary exercise. This experimental approach is important, they explained, because most skeletal muscle adaptation studies utilize electrical stimulation of the muscle, which is much less physiologic and does not as closely mimic what would be expected in human exercise.
When placed in the dark with a running wheel, mice will instinctively run, the researchers said. In the Duke experiments, 41 out of 42 mice “ran” up to seven miles each night. At regular intervals over a 28-day period, the researchers then performed detailed analysis of capillary growth and the subsequent changes in muscle fiber type and compared these findings to sedentary mice.
Mammalian muscle is generally made up of two different fiber types – slow-twitch fibers requiring oxygen to function, and the fast-twitch fibers, which function in the absence of oxygen by breaking down glucose. Because of their need for oxygen, slow-twitch fibers tend to have a higher density of capillaries.
“Exercise training is probably the most widely utilized physiological stimulus for skeletal muscle, but the mechanisms underlying the adaptations muscle fibers make in response to exercise is not well understood,” Waters said. “What we have shown in our model is that increases in the capillary density occur before a significant change from fast-twitch to slow-twitch fiber type, and furthermore, that changes in levels of the VEGF protein occur before the increased capillary density.”
“Interestingly, capillary growth appears to occur preferentially among fast-twitch fibers, and it is these very fibers that likely change to slow-twitch fibers,” Waters said. “Since exercise has the potential to impact an enormous number of clinical conditions, therapeutic manipulations intended to alter the response to exercise would benefit from a more detailed understanding of what actually happens to muscle as a result of exercise.”
The exact relationship between VEGF, exercise induced angiogenesis, and muscle fiber type adaptation is still not clear and will become the focus of the group’s continuing research. The findings from the current study, however, are providing important temporal and spatial clues to the adaptability process.
“Our data suggests that angiogenesis is one of the key early steps in skeletal muscle adaptation and may be an essential step in the adaptability process,” Waters continued. “This understanding could be crucial for designing new studies that can be performed to inhibit the angiogenic response to exercise in order to directly test the links between angiogenesis and skeletal muscle plasticity.”
###
The research team was supported by grants from the American Heart Association and the U.S. Department of Veterans Affairs.
Other members of the Duke team were Ping Li, Brian Annex, M.D., and Zhen Yan, Ph.D. Svein Rotevatn, Haukeland University Hospital, Bergen, Norway, was also a member of the team.

Duke University Medical Center researchers have identified the skeletal muscle changes that occur in response to endurance exercise and have better defined the role of vascular endothelial growth factor (VEGF) in creating new blood vessels, known as angiogenesis, in the process.

VEGF is a protein known to trigger blood vessel growth by activating numerous genes involved in angiogenesis.

The researchers’ new insights could provide a roadmap for medical investigators as they seek to use VEGF in treating human conditions characterized by lack of adequate blood flow, such as coronary artery disease or peripheral arterial disease.

Using mice as animal models, the researchers found that exercise initially stimulates the production of VEGF, which then leads to an increase in the number of capillaries within a specific muscle fiber type, ultimately leading to an anaerobic to aerobic change in the muscle fibers supplied by those vessels. The VEGF gene produces a protein that is known to trigger blood vessel growth.

The results of the Duke experiments were presented by cardiologist Richard Waters, M.D., Nov. 8, 2004, at the American Heart Association’s annual scientific sessions in New Orleans.

“It is known that exercise can improve the symptoms of peripheral arterial disease in humans and it has been assumed that angiogenesis played a role in this improvement,” Waters said. “However, the clinical angiogenesis trials to date utilizing VEGF have been marginally successful and largely disappointing, so we felt it would be better at this point to return to animal studies in an attempt to better understand the angiogenic process.”

The Duke team performed their experiments using a mouse model of voluntary exercise. This experimental approach is important, they explained, because most skeletal muscle adaptation studies utilize electrical stimulation of the muscle, which is much less physiologic and does not as closely mimic what would be expected in human exercise.

When placed in the dark with a running wheel, mice will instinctively run, the researchers said. In the Duke experiments, 41 out of 42 mice “ran” up to seven miles each night. At regular intervals over a 28-day period, the researchers then performed detailed analysis of capillary growth and the subsequent changes in muscle fiber type and compared these findings to sedentary mice.

Mammalian muscle is generally made up of two different fiber types – slow-twitch fibers requiring oxygen to function, and the fast-twitch fibers, which function in the absence of oxygen by breaking down glucose. Because of their need for oxygen, slow-twitch fibers tend to have a higher density of capillaries.

“Exercise training is probably the most widely utilized physiological stimulus for skeletal muscle, but the mechanisms underlying the adaptations muscle fibers make in response to exercise is not well understood,” Waters said. “What we have shown in our model is that increases in the capillary density occur before a significant change from fast-twitch to slow-twitch fiber type, and furthermore, that changes in levels of the VEGF protein occur before the increased capillary density.”

“Interestingly, capillary growth appears to occur preferentially among fast-twitch fibers, and it is these very fibers that likely change to slow-twitch fibers,” Waters said. “Since exercise has the potential to impact an enormous number of clinical conditions, therapeutic manipulations intended to alter the response to exercise would benefit from a more detailed understanding of what actually happens to muscle as a result of exercise.”

The exact relationship between VEGF, exercise induced angiogenesis, and muscle fiber type adaptation is still not clear and will become the focus of the group’s continuing research. The findings from the current study, however, are providing important temporal and spatial clues to the adaptability process.

“Our data suggests that angiogenesis is one of the key early steps in skeletal muscle adaptation and may be an essential step in the adaptability process,” Waters continued. “This understanding could be crucial for designing new studies that can be performed to inhibit the angiogenic response to exercise in order to directly test the links between angiogenesis and skeletal muscle plasticity.”

 

———————————–
Article adapted by MD Sports from original press release.
———————————–
Contact: Richard Merritt
Duke University Medical Center 

The research team was supported by grants from the American Heart Association and the U.S. Department of Veterans Affairs

Cereal and non-fat milk is as good as a commercially-available sports drink in initiating post-exercise muscle recovery.

Background

This study compared the effects of ingesting cereal and nonfat milk (Cereal) and a carbohydrate-electrolyte sports drink (Drink) immediately following endurance exercise on muscle glycogen synthesis and the phosphorylation state of proteins controlling protein synthesis: Akt, mTOR, rpS6 and eIF4E.

Methods

Trained cyclists or triathletes (8 male: 28.0+/-1.6 yrs, 1.8+/-0.0 m, 75.4+/-3.2 kg, 61.0+/-1.6 ml O2 * kg-1 * min-1; 4 female: 25.3+/-1.7 yrs, 1.7+/-0.0 m, 66.9+/-4.6 kg, 46.4+/-1.2 mlO2 * kg-1 * min-1) completed two randomly-ordered trials serving as their own controls. After 2 hours of cycling at 60-65% VO2MAX, a biopsy from the vastus lateralis was obtained (Post0), then subjects consumed either Drink (78.5 g carbohydrate) or Cereal (77 g carbohydrate, 19.5 g protein and 2.7 g fat). Blood was drawn before and at the end of exercise, and at 15, 30 and 60 minutes after treatment. A second biopsy was taken 60 minutes after supplementation (Post60). Differences within and between treatments were tested using repeated measures ANOVA.

Results

At Post60, blood glucose was similar between treatments (Drink 6.1+/-0.3, Cereal 5.6+/-0.2 mmol/L, p<.05), but after Cereal, plasma insulin was significantly higher (Drink 123.1+/-11.8, Cereal 191.0+/-12.3 pmol/L, p<.05), and plasma lactate significantly lower (Drink 1.4+/-0.1, Cereal 1.00+/-0.1 mmol/L, p<.05). Except for higher phosphorylation of mTOR after Cereal, glycogen and muscle proteins were not statistically different between treatments. Significant Post0 to Post60 changes occurred in glycogen (Drink 52.4+/-7.0 to 58.6+/-6.9, Cereal 58.7+/-9.6 to 66.0+/-10.0 mumol/g, p<.05) and rpS6 (Drink 17.9+/-2.5 to 35.2+/-4.9, Cereal 18.6+/-2.2 to 35.4+/-4.4 %Std, p<.05) for each treatment, but only Cereal significantly affected glycogen synthase (Drink 66.6+/-6.9 to 64.9+/-6.9, Cereal 61.1+/-8.0 to 54.2+/-7.2%Std, p<.05), Akt (Drink 57.9+/-3.2 to 55.7+/-3.1, Cereal 53.2+/-4.1 to 60.5+/-3.7 %Std, p<.05) and mTOR (Drink 28.7+/-4.4 to 35.4+/-4.5, Cereal 23.0+/-3.1 to 42.2+/-2.5 %Std, p<.05). eIF4E was unchanged after both treatments.

Conclusion

These results suggest that Cereal is as good as a commercially-available sports drink in initiating post-exercise muscle recovery.

Author: Lynne Kammer, Zhenping Ding, Bei Wang, Daiske Hara, Yi-Hung Liao and John L. Ivy

Credits/Source: Journal of the International Society of Sports Nutrition 2009, 6:11

Governor Sonny Perdue signed a proclamation recognizing May as Exercise is Medicine Month in Georgia. Exercise is Medicine is a national program, founded by the American College of Sports Medicine (ACSM) with The Coca-Cola Company, which encourages consumers to speak with their doctors about an appropriate level of exercise, plan their exercise regimen, track it and stick to it.

ATHENS, Ohio – Men over 60 may be able to increase their strength by as much as 80 percent by performing intense weight training exercises, according to physiologists involved in studies of the health benefits of weight lifting. The researchers also have found that older men gain strength at the same rate as men in their 20s.

In a study of 18 men ages 60 to 75, Ohio University physiologists found that subjects who participated in a 16-week, high-intensity resistence training program on average were 50 percent to 80 percent stronger by the end of the study. None of the participants had engaged in weight lifting prior to the study. Researchers also observed improvements in the seniors’ muscle tone, aerobic capacity and cholesterol profile.

These are some of the latest findings from a decades-long examination of the impact of exercise on the health of men and women of all ages. When researchers compared the strength gains of the elderly participants in this study to findings from other studies they’ve done of college-age men, they found that changes in strength and muscle size were similar in both age groups. The findings were published in a recent issue of the Journal of Gerontology.

“There have been a number of research projects that have come out over the years that suggest there is no age limitation to getting stronger from resistance training,” said Robert Staron, co-author of this study and an associate professor of anatomy in the university’s College of Osteopathic Medicine. “It’s become obvious that it’s important to maintain a certain amount of muscle mass as we age.”

This new study also suggests that elderly men can handle heavy workloads over a long period of time. Participants – who all were in good health and closely monitored during testing and training – performed leg presses, half squats and leg extensions twice a week to exercise the lower body. When the men began the study, they were able to leg press about 375 pounds on average. After the 16-week period, they could take on about 600 pounds. Studies elsewhere have involved low-intensity exercises over a shorter term.

In addition to the increase in strength, researchers found that weight lifting had a beneficial impact on the participants’ cardiovascular system. Tests on an exercise treadmill showed that their bodies used oxygen more efficiently after weight training.

“The individuals run until they are completely exhausted, and it took longer for them to reach that point after resistance training,” Staron said.

Blood samples taken before and after weight training also showed favorable changes in participants’ overall cholesterol profiles, he said, including increases in HDL cholesterol levels and decreases in LDL cholesterol levels.

Losing muscle tone and strength is not uncommon for many senior citizens, Staron said, but this research suggests that a lack of physical exercise can contribute to the problem.

“Certainly, inactivity does play a role in contributing to the decrease in muscle mass,” Staron said. “If we can maintain a certain level of strength through exercise, our quality of life should be better as we age.”

Before beginning a weight lifting regimen, it’s a good idea to consult a physician, Staron advised, adding that it’s also important to learn proper weight lifting techniques. Staron and his colleagues now have turned their attention to how certain weight training routines impact young people.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Andrea Gibson
Ohio University

Collaborators on this project are Fredrick Hagerman, Robert Hikida and Thomas Murray of the College of Osteopathic Medicine, former graduate student Seamus Walsh, Roger Gilders of the College of Health and Human Services, Kumika Toma of the College of Arts and Sciences and Kerry Ragg of the Student Health Service.

The University of Manchester is investigating whether increasing the testosterone levels of frail elderly men could improve their strength, energy and mobility.

This is the first study in the world to examine how testosterone treatment may impact this age-group, led by Professor Fred Wu of the Department of Endocrinology at Manchester Royal Infirmary.

Professor Wu said: “Levels of the male hormone testosterone fall by about 1% a year in men over 40, leading to decreases in muscle size and strength, increased body fat and thinner bones. The changes are also associated with decreased sexual interest, fatigue, mobility problems, depression, increased risk of falling and a general sense of weakness.

“Tests on younger and healthy older men suggest that testosterone replacement could help reverse these symptoms in the frail and elderly.”

Professor Wu’s team is expecting to publish the results in two years’ time, and hopes that if the treatment is proven to be effective it may be adopted as standard practice by the NHS.

As well as increasing strength, mobility and quality of life for elderly men, the move could significantly reduce the accident-rate and care requirements of this group and ultimately reduce demands on the NHS and social services.

Men aged 65+ who have lost weight, are easily tired, slow in walking and feel generally weak for no specific reason are being recruited for the study. Only those volunteers found to have low testosterone levels can be included in the trial.

The protocol for participants requires five visits to the Wellcome Trust Clinical Research Facility on Grafton Street at Manchester Royal Infirmary over the 12 month period. They will receive either testosterone or a dummy placebo in the form of a gel self-applied daily to the skin, for the first six months of the trial. Their muscle strength, mobility, bone-strength, muscle and fat content and general quality of life will then be assessed by the research team after both six and 12 months.

The research is being undertaken in partnership with Central Manchester and Manchester Children’s University Hospitals NHS Trust. Participants are free to withdraw from the study at any time, and all information will be collected in the strictest confidence.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jo Nightingale or Rachael McGraw
University of Manchester

NOTES FOR EDITORS

The University of Manchester (www.manchester.ac.uk) was formed by the merger of The Victoria University of Manchester and UMIST in October 2004, and with 36,000 students is the largest higher education institution in the country. Its Faculty of Medical & Human Sciences (www.mhs.manchester.ac.uk) is one of the largest faculties of clinical and health sciences in Europe, with a research income of over £37 million.

The School of Medicine (www.medicine.manchester.ac.uk) is the largest of the Faculty’s five Schools, with 1300 staff, almost 2000 undergraduates and a £32M research income. The School encompasses five teaching hospitals, and is closely linked to a range of general hospitals and community practices across the North West of England.

University Park, Pa. – Female athletes often lose their menstrual cycle when training strenuously, but researchers have long speculated on whether this infertility was due to low body fat, low weight or exercise itself. Now, researchers have shown that the cause of athletic amenorrhea is more likely a negative energy balance caused by increasing exercise without increasing food intake.

“A growing proportion of women are susceptible to losing their menstrual cycle when exercising strenuously,” says Dr. Nancy I. Williams, assistant professor of kineseology and physiology at Penn State. “If women go six to 12 months without having a menstrual cycle, they could show bone loss. Bone densities in some long distance runners who have gone for a prolonged time period without having normal menstrual cycles can be very low.”

In studies done with monkeys, which show menstrual cyclicity much like women, researchers showed that low energy availability associated with strenuous exercise training plays an important role in causing exercise-induced amenorrhea. These researchers, working at the University of Pittsburgh, published findings in the Journal of Clinical Endocrinology and Metabolism showing that exercise-induced amenorrhea was reversible in the monkeys by increasing food intake while the monkeys still exercised.

Williams worked with Judy L. Cameron, associate professor of psychiatry and cell biology and physiology at the University of Pittsburgh. Dana L. Helmreich and David B. Parfitt, then graduate students, and Anne Caston-Balderrama, at that time a post-doctoral fellow at the University of Pittsburgh, were also part of the research team. The researchers decided to look at an animal model to understand the causes of exercise-induced amenorrhea because it is difficult to closely control factors, such as eating habits and exercise, when studying humans. They chose cynomolgus monkeys because, like humans, they have a menstrual cycle of 28 days, ovulate in mid-cycle and show monthly periods of menses.

“It is difficult to obtain rigorous control in human studies, short of locking people up,” says Williams.

Previous cross-sectional studies and short-term studies in humans had shown a correlation between changes in energy availability and changes in the menstrual cycle, but those studies were not definitive.

There was also some indication that metabolic states experienced by strenuously exercising women were similar to those in chronically calorie restricted people. However, whether the increased energy utilization which occurs with exercise or some other effect of exercise caused exercise-induced reproductive dysfunction was unknown.

“The idea that exercise or something about exercise is harmful to females was not definitively ruled out,” says Williams. “That exercise itself is harmful would be a dangerous message to put out there. We needed to look at what it was about exercise that caused amenorrhea, what it was that suppresses ovulation. To do that, we needed a carefully controlled study.”

After the researchers monitored normal menstrual cycles in eight monkeys for a few months, they trained the monkeys to run on treadmills, slowly increasing their daily training schedule to about six miles per day. Throughout the training period the amount of food provided remained the standard amount for a normal 4.5 to 7.5 pound monkey, although the researchers note that some monkeys did not finish all of their food all of the time.

The researchers found that during the study “there were no significant changes in body weight or caloric intake over the course of training and the development of amenorrhea.” While body weight did not change, there were indications of an adaptation in energy expenditure. That is, the monkeys’ metabolic hormones also changed, with a 20 percent drop in circulating thyroid hormone, suggesting that the suppression of ovulation is more closely related to negative energy balance than to a decrease in body weight.

To seal the conclusion that a negative energy balance was the key to exercise-induced amenorrhea, the researchers took four of the previous eight monkeys and, while keeping them on the same exercise program, provided them with more food than they were used to. All the monkeys eventually resumed normal menstrual cycles. However, those monkeys who increased their food consumption most rapidly and consumed the most additional food, resumed ovulation within as little as 12 to 16 days while those who increased their caloric intake more slowly, took almost two months to resume ovulation.

Williams is now conducting studies on women who agree to exercise and eat according to a prescribed regimen for four to six months. She is concerned because recreational exercisers have the first signs of ovulatory suppression and may easily be thrust into amenorrhea if energy availability declines. Many women that exercise also restrict their calories, consciously or unconsciously.

“Our goal is to test whether practical guidelines can be developed regarding the optimal balance between calories of food taken in and calories expended through exercise in order to maintain ovulation and regular menstrual cycles,” says Williams. “This would then ensure that estrogen levels were also maintained at healthy levels. This is important because estrogen is a key hormone in the body for many physiological systems, influencing bone strength and cardiovascular health, not just reproduction.”

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: A’ndrea Elyse Messer
Penn State

University Park, Pa. — Girls and boys are now equally caught up in the social pressure for a muscular body image currently lauded in popular culture. A Penn State researcher contends those pressures are leading girls and boys down unhealthy avenues such as the misuse of anabolic steroids.

“Young girls have always had to struggle against the media stereotypes of stick-thin models or voluptuous sexuality, but with the rising popularity of women sports, girls are bombarded with buffed body images,” says Dr. Charles Yesalis, professor of health policy and administration, and exercise and sports science at Penn State, and editor of the newest edition of the book “Anabolic Steroids in Sports and Exercise.” “Now, young boys face pop culture musclemen like The Rock and Steve Austin, given the influence of professional wrestling shows.”

“The current film ‘Charlie’s Angels’ sports karate-kicking women in cool clothes,” he added. “Today’s children look with envy at the physiques of actors Arnold Schwarzenegger, Jean-Claude Van Damme, Wesley Snipes, and Linda Hamilton, whose roles call for a muscular build. Hollywood stars are openly taking Human Growth Hormone (HGH) injections to combat aging.”

In addition, children are entering competitive sports at younger ages and many working families have children signed up in two or three sports. Parents, coaches and young athletes are facing growing violence in amateur athletics. The pressure to win at all costs continues to weigh heavily on children, Yesalis notes.

The concern is that many youths will take shortcuts to achieving a muscular build by using anabolic steroids. Female athletes also are pressured to achieve low body fat to excel in their sport. The Penn State researcher has seen evidence that the pressures are reaching down to young children. For example, the book cites figures from the Monitoring The Future Study, a national-level epidemiological survey conducted annually since 1975. Approximately 50,000 8th, 10th and 12 graders are surveyed each year.

The MTF data shows that during the 1990s, anabolic steroid use among 12 graders –both boys and girls – rose to an all-time high with more than 500,000 adolescents having cycled – an episode of use of 6 to 12 weeks – during their lifetime. And the percentage of girls alone doubled in the same period.

A 1998 study of 965 youngsters at four Massachusetts middle schools found that 2.7 percent admitted to taking illegal steroids for better sports performance. That included some boys and girls as young as 10 years old. “This year’s Olympic doping scandals and the epidemic of anabolic steroids in professional baseball just glorify and justify steroids to impressionable youths,” Yesalis notes. “The use of anabolic steroids has cascaded down from the Olympic, professional and college levels to high schools and junior high schools and now middle schools for athletes and non-athletes alike. ”

“Anabolic steroids are made to order for a female wanting to attain a lean athletic body. While most drug abuse has outcomes that tend to discourage use, females who use anabolic steroids may experience a decrease in body fat, increased muscle size and strength, and enhanced sports performance,” he says.

Girls and boys misusing anabolic steroids may win approval and rewards from parents, coaches and peers, but don’t realize there are long-term negative effects on their health, particularly girls, according to Yesalis. Young girls face potential permanent side effects of male hair growth or baldness, deepening of the voice, the enlargement of the clitoris as well as the known risks of heart and liver diseases.

Published by Human Kinetics, the book incorporates the latest research, experience and insights of 15 experts on the scientific, clinical, historical, legal and other aspects of steroid abuse and drug testing. New information looks at the effects of steroids on health, particularly that of women.

This year, trials of East German doctors, coaches and officials reveal records of systematic doping of young athletes without their own or parents’ knowledge. In 1974, officials’ plan to turn the tiny Communist nation into a superpower in sports included giving performance-enhancing drugs to all competing athletes including children as young as 10 years old. The indictments included 142 former East German athletes who now complain of health problems. In media reports, several female athletes report incidents of miscarriages, liver tumor, gynecological problems and enlarged heart, all showing up decades after the steroid misuse.

“Our society’s current strategy for dealing with the abuse of anabolic steroids in sport primarily involves testing, law enforcement and education,” Yesalis says. “But our efforts to deal with this problem have not been very successful. Unless we deal with the social environment that rewards winning at all costs and an unrealistic physical appearance, we won’t even begin to address the problem.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Vicki Fong
Penn State

New study dispels belief that increasing the hormone level improves the sexual function

Bethesda, Md.— The American Journal of Physiology: Endocrinology and Metabolism, one of the 14 peer-reviewed journals published by the American Physiological Society (APS), spotlights recent research findings designed to improve and understand human well-being and health. A study in the December edition examines how different doses of testosterone affect body composition, muscle size, strength, and sexual functions.

Background

Testosterone regulates many physiological processes, including muscle protein metabolism, some aspects of sexual and cognitive functions, secondary sex characteristics, erythropoiesis, plasma lipids, and bone metabolism. However, testosterone dose dependency of various hormonal dependent functions has not been well understood in the scientific community. Previous studies reveal that administration of replacement doses of testosterone to hypogonadal men and of supraphysiological doses to eugonadal men increases fat-free mass, muscle size, and strength. Conversely, suppression of endogenous testosterone concentrations is associated with loss of fat-free mass and a decrease in fractional muscle protein synthesis.

What is not known is whether testosterone effects on the muscle are dose dependent, or the nature of the testosterone dose-response relationships. Animal studies suggest that different androgen-dependent processes have different androgen dose-response relationships. Sexual function in male mammals is maintained at serum testosterone concentrations that are at the lower end of the male range. However, it is not known whether the low normal testosterone levels that normalize sexual function are sufficient to maintain muscle mass and strength, or whether the higher testosterone concentrations required to maintain muscle mass and strength might adversely affect plasma lipids, hemoglobin levels, and the prostate.

The Study

The primary objective of this study was to determine the dose dependency of testosterone’s effects on fat-free mass and muscle performance. The authors hypothesized that changes in circulating testosterone concentrations would be associated with dose-dependent changes in fat-free mass, muscle strength, and power in conformity with a single linear dose-response relationship, and that the dose requirements for maintaining other androgen-dependent processes would be different.

Young men were treated with a long-acting gonadotropin-releasing hormone (GnRH) agonist to suppress endogenous testosterone secretion, and concomitantly also with one of five testosterone-dose regimens to create different levels of serum testosterone concentrations extending from subphysiological to the supraphysiological range. The lowest testosterone dose, 25 mg weekly, was selected because this dose had been shown to maintain sexual function in GnRH antagonist-treated men. The selection of the 600-mg weekly dose was based on the consideration that this was the highest dose that had been safely administered to men in controlled studies.

The authors of the study, “Testosterone Dose-Response Relationships in Healthy Young Men” are Shalender Bhasin, Linda Woodhouse, Connie Dzekov, Jeanne Dzekov, Indrani Sinha-Hikim, Ruoquing Shen, and Atam B. Singh, all from the Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA; Richard Casaburi, Dimple Bhasin, Nancy Berman, Rachelle Bross and Jeffrey Phillips, from the Harbor-University of California Los Angeles Medical Center, Torrance, CA; Xianghong Chen and Kevin E. Yarasheski at the Biomedical Mass Spectrometric Research Resource, Department of Internal Medicine, Washington University, School of Medicine, St. Louis, Missouri, Lynne Magliano and Thomas W. Storer, from the Laboratory for Exercise Sciences, El Camino College, El Camino, CA.

Protocol

This was a double-blind, randomized study consisting of a four-week control period, a 20-week treatment period, and a 16-week recovery period. The participants were healthy men, 18-35 years of age, with prior weight-lifting experience and normal testosterone levels. These men had not used any anabolic agents and had not participated in competitive sports events in the preceding year, and they were not planning to participate in competitive events in the following year. The participants were asked not to undertake strength training or moderate-to-heavy endurance exercise during the study. These instructions were reinforced every four weeks.

Sixty-one eligible men were randomly assigned to one of five groups. All received monthly injections of a long-acting GnRH agonist to suppress endogenous testosterone production. In addition, group 1 received 25 mg of testosterone enanthate intramuscularly weekly; group 2, 50 mg testosterone enanthate; group 3, 125 mg testosterone enanthate; group 4, 300 mg testosterone enanthate; and group 5, 600 mg testosterone enanthate. Twelve men were assigned to group 1, 12 to group 2, 12 to group 3, 12 to group 4, and 13 to group 5.

Nutritional Intake

Energy and protein intakes were standardized at 36 kcal/kg. The standardized diet was initiated two weeks before treatment started; dietary instructions were reinforced every four weeks. The nutritional intake was verified by analysis of three-day food records and 24-hour food recalls every four weeks.

Outcome Measures

Body composition and muscle performance were assessed at baseline and during week 20. Fat-free mass and fat mass were measured by underwater weighing and dual-energy X-ray absorptiometry. Total thigh muscle and quadriceps muscle volumes were measured by MRI scanning.

For estimation of total body water, the men ingested 10 g of 2H2O, and plasma samples were drawn at 0, 120, 180, and 240 min. A measurement of 2H abundance in plasma was made by nuclear magnetic resonance spectroscopy, with a correction factor of 0.985 for exchangeable hydrogen. Another measure of bilateral leg press strength was taken by use of the one-repetition maximum (1-RM) method. A seated leg press exercise with pneumatic resistance was used for this purpose. Subjects performed 5-10 min of leg cycling and stretching warm-up and received instruction and practice in lifting mechanics before performing progressive warm-up lifts leading to the 1-RM. Seat position and the ensuing knee and hip angles, as well as foot placement, were measured and recorded for use in subsequent testing. To ensure reliability in this highly effort-dependent test, the 1-RM score was reassessed within seven days, but not sooner than two days, after the first evaluation. If duplicate scores were within five percent, the higher of the two values was accepted as the strength score. If the two tests differed by greater than five percent, additional studies were conducted.

Sexual function was assessed by daily logs of sexual activity and desire that were maintained for seven consecutive days at baseline and during treatment by use of a published instrument. Spatial cognition was assessed by a computerized checkerboard test and mood by Hamilton’s depression and Young’s mania scales.

Adverse experiences, blood counts and chemistries, prostate-specific antigen (PSA), plasma lipids, total and free testosterone, luteinizing hormone (LH), sex steroid-binding globulin (SHBG), and insulin-like growth factor I (IGF-I) levels were measured periodically during control and treatment periods. Serum total testosterone was measured by an immunoassay.

Results

Of 61 men enrolled, 54 completed the study: 12 in group 1, 8 in group 2, 11 in group 3, 10 in group 4, and 13 in group 5. One man discontinued treatment because of acne; other subjects were unable to meet the demands of the protocol. The five groups did not significantly differ with respect to their baseline characteristics. Key findings included:

– Compliance: All evaluable subjects received 100percent of their GnRH agonist injections, and only one man in the 125-mg group missed one testosterone injection.

– Nutritional intake: Daily energy intake and proportion of calories derived from protein, carbohydrate, and fat were not significantly different among the five groups at baseline. There was no significant change in daily caloric, protein, carbohydrate, or fat intake in any group during treatment.

– Hormone levels: Serum total and free testosterone levels, measured during week 16, one week after the previous injection, were linearly dependent on the testosterone dose (P = 0.0001). Serum total and free testosterone concentrations decreased from baseline in men receiving the 25- and 50-mg doses and increased at 300- and 600-mg doses. Serum LH levels were suppressed in all groups. Serum SHBG levels decreased dose dependently at the 300- and 600-mg doses but did not change in other groups. Serum IGF-I concentrations increased dose dependently at the 300- and 600-mg doses.

– Body composition: Fat-free mass, measured by underwater weighing, did not change significantly in men receiving the 25- or 50-mg testosterone dose, but it increased dose dependently at higher doses. The changes in fat-free mass were highly dependent on testosterone dose (P = 0.0001) and correlated with log total testosterone concentrations during treatment (r = 0.73, P = 0.0001). Fat mass, measured by underwater weighing, increased significantly in men receiving the 25- and 50-mg doses, but did not change in men receiving the higher doses of testosterone. There was an inverse correlation between change in fat mass by underwater weighing and log testosterone concentrations.

– Muscle size: The thigh muscle volume and quadriceps muscle volume did not significantly change in men receiving the 25- or 50-mg doses but increased dose-dependently at higher doses of testosterone. The changes in thigh muscle and quadriceps muscle volumes correlated with log testosterone levels during treatment.

– Muscle performance: The leg press strength did not change significantly in the 25- and 125-mg-dose groups but increased significantly in those receiving the 50-, 300-, and 600-mg doses. Leg power did not change significantly in men receiving the 25-, 50-, and 125-mg doses of testosterone weekly, but it increased significantly in those receiving the 300- and 600-mg doses. The increase in leg power correlated with log testosterone concentrations and changes in fat-free mass and muscle strength.

– Behavioral measures: The scores for sexual activity and sexual desire measured by daily logs did not change significantly at any dose. Similarly, visual-spatial cognition and did not change significantly in any group.

– Adverse experiences and safety measures: Hemoglobin levels decreased significantly in men receiving the 50-mg dose but increased at the 600-mg dose; the changes in hemoglobin were positively correlated with testosterone concentrations. Changes in plasma HDL cholesterol, in contrast, were negatively dependent on testosterone dose and correlated with testosterone concentrations. Total cholesterol, plasma low-density lipoprotein cholesterol, and triglyceride levels did not change significantly at any dose. Serum PSA, creatinine, bilirubin, alanine aminotransferase, and alkaline phosphatase did not change significantly in any group, but aspartate aminotransferase decreased significantly in the 25-mg group. Two men in the 25-mg group, five in the 50-mg group, three in the 125-mg group, seven in the 300-mg group, and two in the 600-mg group developed acne. One man receiving the 50-mg dose reported decreased ability to achieve erections.

Discussion

The researchers found that GnRH agonist administration suppressed endogenous LH and testosterone secretion. Therefore, circulating testosterone concentrations during treatment were proportional to the administered dose of testosterone enanthate. This strategy of combined administration of GnRH agonist and graded doses of testosterone enanthate was effective in establishing different levels of serum testosterone concentrations among the five treatment groups. The different levels of circulating testosterone concentrations created by this regimen were associated with dose- and concentration-dependent changes in fat-free mass, fat mass, thigh and quadriceps muscle volume, muscle strength, leg power, hemoglobin, circulating IGF-I, and plasma HDL cholesterol.

Serum PSA levels, sexual desire and activity, and spatial cognition did not change significantly at any dose. The changes in fat-free mass, muscle volume, leg press strength and power, hemoglobin, and IGF-I were positively correlated, whereas changes in plasma HDL cholesterol and fat mass were negatively correlated with testosterone dose and total and free testosterone concentrations during treatment.

There were no significant changes in overall sexual activity or sexual desire in any group, including those receiving the 25-mg dose. Testosterone replacement of hypogonadal men improves frequency of sexual acts and fantasies, sexual desire, and response to visual erotic stimuli. The data demonstrate that serum testosterone concentrations at the lower end of male range can maintain some aspects of sexual function.

Conclusions

This study demonstrates that an increase in circulating testosterone concentrations results in dose-dependent increases in fat-free mass, muscle size, strength, and power. The relationships between circulating testosterone concentrations and changes in fat-free mass and muscle size conform to a single log-linear dose-response curve. The data do not support the notion of two separate dose-response curves reflecting two independent mechanisms of testosterone action on the muscle.

In addition, the study could not determine if responsiveness to testosterone is attenuated in older men. Testosterone dose-response relationships might be modulated by other muscle growth regulators, such as nutritional status, exercise and activity level, glucocorticoids, thyroid hormones, and endogenous growth hormone secretory status. Serum PSA levels decrease after androgen withdrawal, and testosterone replacement of hypogonadal men increases PSA levels into the normal range.

The data demonstrate that different androgen-dependent body functions respond differently to different testosterone dose-response relationships. Some aspects of sexual function and spatial cognition, and PSA levels, were maintained by relatively low doses of testosterone in GnRH agonist-treated men and did not increase further with administration of higher doses of testosterone. In contrast, graded doses of testosterone were associated with dose and testosterone concentration-dependent changes in fat-free mass, fat mass, muscle volume, leg press strength and power, hemoglobin, IGF-I, and plasma HDL cholesterol.

Testosterone doses associated with significant gains in fat-free mass, muscle size, and strength were associated with significant reductions in plasma HDL concentrations. Further studies are needed to determine whether clinically significant anabolic effects of testosterone can be achieved without adversely affecting cardiovascular risk. Selective androgen receptor modulators that preferentially augment muscle mass and strength, but only minimally affect prostate and cardiovascular risk factors, are desirable.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Donna Krupa
American Physiological Society

Source: American Journal of Physiology: Endocrinology and Metabolism, December 2001

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.