Archive for the ‘Player’ Category

And it increases endurance to run a mile and decreases inflammation

The Salk Institute scientist who earlier discovered that enhancing the function of a single protein produced a mouse with an innate resistance to weight gain and the ability to run a mile without stopping has found new evidence that this protein and a related protein play central roles in the body’s complex journey to obesity and offer a new and specific metabolic approach to the treatment of obesity related disease such as Syndrome X (insulin resistance, hyperlipidemia and atherosclerosis).

Dr. Ronald M. Evans, a Howard Hughes Medical Investigator at The Salk Institute’s Gene Expression Laboratory, presented two new studies (date) at Experimental Biology 2005 in the scientific sessions of the American Society for Biochemistry and Molecular Biology. The studies focus on genes for two of the nuclear hormone receptors that control broad aspects of body physiology, including serving as molecular sensors for numerous fat soluble hormones, Vitamins A and D, and dietary lipids.

The first study focuses on the gene for PPARd, a master regulator that controls the ability of cells to burn fat. When the “delta switch” is turned on in adipose tissue, local metabolism is activated resulting in increased calorie burning. Increasing PPARd activity in muscle produces the “marathon mouse,” characterized by super-ability for long distance running. Marathon mice contain altered muscle composition, which doubles its physical endurance, enabling it to run an hour longer than a normal mouse. Marathon mice contain increased levels of slow twitch (type I) muscle fiber, which confers innate resistance to weight gain, even in the absence of exercise.

Additional work to be reported at Experimental Biology looks at another characteristic of PPARd: its role as a major regulator of inflammation. Coronary artery lesions or atherosclerosis are thought to be sites of inflammation. Dr. Evans found that activation of PPARd suppresses the inflammatory response in the artery, dramatically slowing down lesion progression. Combining the results of this new study with the original “marathon mouse” findings suggests that PPARd drugs could be effective in controlling atherosclerosis by limiting inflammation and at the same time promoting improved physical performance.

Dr. Evans says he is very excited about the therapeutic possibilities related to activation of the PPARd gene. He believes athletes, especially marathon runners, naturally change their muscle fibers in the same way as seen in the genetically engineered mice, increasing levels of fat-burning muscle fibers and thus building a type of metabolic ‘shield” that keeps them from gaining weight even when they are not exercising.

But athletes do it through long periods of intensive training, an approach unavailable to patients whose weight or medical problems prevent them from exercise. Dr. Evans believes activating the PPARd pathway with drugs (one such experimental drug already is in development to treat people with lipid metabolism) or genetic engineering would help enhance muscle strength, combat obesity, and protect against diabetes in these patients.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Sarah Goodwin
Federation of American Societies for Experimental Biology

Researchers at the University of Pennsylvania say that practicing even small doses of daily meditation may improve focus and performance.

Meditation, according to Penn neuroscientist Amishi Jha and Michael Baime, director of Penn’s Stress Management Program, is an active and effortful process that literally changes the way the brain works. Their study is the first to examine how meditation may modify the three subcomponents of attention, including the ability to prioritize and manage tasks and goals, the ability to voluntarily focus on specific information and the ability to stay alert to the environment.

In the Penn study, subjects were split into two categories. Those new to meditation, or “mindfulness training,” took part in an eight-week course that included up to 30 minutes of daily meditation. The second group was more experienced with meditation and attended an intensive full-time, one-month retreat.

Researchers found that even for those new to the practice, meditation enhanced performance and the ability to focus attention. Performance-based measures of cognitive function demonstrated improvements in a matter of weeks. The study, published in the journal Cognitive, Affective, & Behavioral Neuroscience, suggests a new, non-medical means for improving focus and cognitive ability among disparate populations and has implications for workplace performance and learning.

Participants performed tasks at a computer that measured response speeds and accuracy. At the outset, retreat participants who were experienced in meditation demonstrated better executive functioning skills, the cognitive ability to voluntarily focus, manage tasks and prioritize goals. Upon completion of the eight-week training, participants new to meditation had greater improvement in their ability to quickly and accurately move and focus attention, a process known as “orienting.” After the one-month intensive retreat, participants also improved their ability to keep attention “at the ready.”

The results suggest that meditation, even as little as 30 minutes daily, may improve attention and focus for those with heavy demands on their time. While practicing meditation may itself may not be relaxing or restful, the attention-performance improvements that come with practice may paradoxically allow us to be more relaxed.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Jordan Reese
University of Pennsylvania

The research was supported by the National Institutes of Health and the Penn Stress Management Program.

Genetic research into athletic ability should be encouraged for its potential benefits in both sport and public health, a leading group of scientists meeting at the University of Bath said today. Genetic research into athletic ability should be encouraged for its potential benefits in both sport and public health, a leading group of scientists meeting at the University of Bath said today.

However, ethical concerns, such as whether seeking information about differences between ethnic groups could be perceived as racist research, need to be properly addressed, they warn.

Their recommendations are published in a ‘position stand’ on genetic research and testing launched at the British Association of Sport & Exercise Sciences annual meeting today.

They call for more genetic research in the sport and exercise sciences because of the anticipated benefits for public health, but want researchers to take a more active role in debating the implications of their work with the public.

“If a powerful muscle growth gene was identified, on the one hand this could help develop training programmes that increase muscle size and strength in athletes, but even more importantly the knowledge could be used to develop exercise programmes or drugs to combat muscle wasting in old age,” said Dr Alun Williams from Manchester Metropolitan University, one of the report’s authors.

“We, as scientists investigating genetics, acknowledge a public concern about some genetic research and we believe scientists need to engage in public in debates about the potential benefits of their research.

“Research into the athletic success of East African distance runners or sprinters of West African ancestry might be perceived as unethical.

“But understanding the limits of human exercise capacity in sport could lead to the development of treatments for a range of diseases like cancer and cardiovascular disease.”

The potential applications of genetic testing in sport and exercise also raise some ethical concerns, for example in identifying potential athletic ability before birth.

An Australian company already offers the first genetic performance test (for the ACTN3 gene) which has been linked to sprint and power performance.

The report authors are sceptical about whether this test is useful but anticipate that more advanced versions of these tests will be available in future.

“We are not yet at a point where we can identify a potential future Olympic champion from genetic tests but we may not be very far away,” said Dr Williams, who wrote the report with Drs Henning Wackerhage (Aberdeen University), Andy Miah (University of Paisley), Roger Harris (University of Chichester) and Hugh Montgomery (University College London).

They highlight two dangers of genetic performance tests. Firstly, genetic performance tests might later be linked to disease. For example, a muscle growth gene may later be linked to cancer growth.

“Not all people may want to know, while young that they are at increased risk of cancer by early middle age, but they might inadvertently become aware of that just because they had a ‘sport gene’ test,” said Dr Williams.

Secondly, genetic performance tests can be performed even before birth and this may lead to the selection of foetuses or to abortions based on athletic potential.

The report recommends genetic counselling and that the testing should be confined to mature individuals who fully understand the relevant issues.

Genetic tests might also be used to screen for health risks during sport such as genes that are linked to sudden cardiac death.

Genetic tests for sudden cardiac death are already available but the report recommends that such testing should not be enforced on athletes.

Problems with mandatory testing are highlighted by the case of the basketball player Eddy Curry, who had an irregular heart beat.

Curry was asked by his club, the Chicago Bulls, to perform a predictive genetic test for a heart condition. The athlete refused and was traded to the New York Knicks who did not make such a demand.

In future, genetic tests might be used to identify those that respond with the biggest drop in cholesterol, blood pressure or glucose to exercise.

In a personalised medicine approach, such tests could be used to select subjects for therapeutic exercise programmes but scientists are concerned that this might undermine the ‘exercise for all’ message that already seems difficult to get across to the public.

The authors say that genetic testing might also be used to detect gene doping, which may be a real threat by the time of the London Olympics in 2012, or to show that positive doping tests are the result of a genetic mutation in an athlete.

The report recommends that genetic testing should be used for anti-doping testing as long as the genetic samples are destroyed after testing.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Andrew McLaughlin
University of Bath

Concussions can happen to any athlete—male or female—in any sport. Concussions are a type of traumatic brain injury (TBI), caused by a blow or jolt to the head that can range from mild to severe and can disrupt the way the brain normally works.  

  • A concussion can occur when an athlete receives a traumatic force to the head or upper body that causes the brain to shake inside of the skull.  The injury is defined as a concussion when it causes a change in mental status such as loss of consciousness, amnesia, disorientation, confusion or mental fogginess.
  • Between 1.4 and 3.6 million sports and recreation-related concussions occur each year, with the majority happening at the high school level, according to the Center for Disease Control and Prevention.  Because many mild concussions go undiagnosed and unreported, it is difficult to estimate the rate of concussion in any sport, but studies estimate that at least 10 to 20 percent of all athletes involved in contact sports have a concussion each season
  • Because no two concussions are exactly alike and symptoms are not always definite, the injury’s severity, effects and recovery are sometimes difficult to determine.  The decision to allow the athlete to return to the game is not always straightforward, although research has shown that until a concussed brain is completely healed, the brain is likely vulnerable to further injury.  Thus, the critical importance of properly managing the injury.
  • Allowing enough healing and recovery time following a concussion is crucial in preventing any further damage. Research shows that the effects of repeated concussion in young athletes are cumulative. Most athletes who experience an initial concussion can recover completely as long as they are not returned to contact sports too soon. Following a concussion, there is a period of change in brain function that varies in severity and length with each individual. During this time, the brain is vulnerable to more severe or permanent injury. If the athlete sustains a second concussion during this time period, the risk of more serious brain injury increases.
  • In recent years, research has shown that even seemingly mild concussions can have serious consequences in young athletes if they are not properly managed. Loss of consciousness is not an indicator of injury severity. Traditional imaging techniques such as MRI and CT may be helpful in severe injury cases, but cannot identify subtle effects believed to occur in mild concussion. 
  • An explosion of scientific research over the past decade has taught doctors more about the proper management of sports-related concussion than was ever known before, and has raised public awareness and significantly changed the way sports concussions are managed.
  • Much of the recently published research includes data proving the usefulness of objective neurocognitive testing, such as ImPACT™, as part of the comprehensive clinical evaluation to determine recovery following concussion.  Recent international sports injury management guidelines have emphasized player symptoms and neuropsychological test results as “cornerstones” of the evaluation and management process.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Susan Manko
University of Pittsburgh Schools of the Health Sciences

Concussions are common in young athletes but the underlying changes in brain function that occur have been poorly understood. Now, a University of Pittsburgh School of Medicine study is the first to link changes in brain function directly to the recovery of the athlete. Results of the five-year study, funded by the National Institutes of Health, are published in the August issue of the scientific peer-reviewed journal, Neurosurgery, the official journal of the Congress of Neurological Surgeons.

“We found that abnormal brain activity in children and adolescents on functional MRI (fMRI) was clearly related to their performance on neuropsychological tests of attention and memory and to their report of symptoms such as headaches,” said principal investigator Mark Lovell, Ph.D., asssociate professor in the departments of orthopaedic surgery and neurological surgery at the University of Pittsburgh School of Medicine.

“These results confirm crucial objective information that is commonly obtained by neuropsychological testing to help team doctors and athletic trainers make critical decisions about concussion management and safe return to play,” added Dr. Lovell, who is founding director of the University of Pittsburgh Medical Center (UPMC) Sports Medicine Concussion Program, a clinical service and research program focused on the management of sports-related concussions.

“Our findings have several implications for understanding the recovery process after sports-related concussions,” said study co-author Michael (Micky) Collins, Ph.D., assistant professor in the departments of orthopaedic surgery and neurological surgery at Pitt’s School of Medicine, and assistant director of the UPMC program. “Although the results of this study must be considered preliminary, fMRI represents an important evolving technology that is providing further insight now for safe return-to-play decisions in young athletes and may help shape guidelines in the future.”

The study helps define concussion and recovery for safe return-to-play

According to the Centers for Disease Control and Prevention, between 1.4 and 3.6 million sports and recreation-related concussions occur each year, with the majority happening at the high school level. “An explosion of scientific research over the past decade has taught us more about mild traumatic brain injury or concussion than we have ever known,” noted Dr. Lovell, “including the knowledge that mismanagement of even seemingly mild concussions can lead to serious consequences in young athletes.”

A concussion can occur when an athlete receives a traumatic force to the head or upper body that causes the brain to shake inside of the skull. Injury is defined as a concussion when it causes a change in mental status such as loss of consciousness, amnesia, disorientation, confusion or mental fogginess. The severity, effects and recovery of concussion are difficult to determine because no two concussions are alike, and symptoms are not always straightforward. In recent years, research has shown that until a concussed brain is completely healed, the brain may be vulnerable to further injury, which has led to published studies that have raised public awareness and significantly changed the way sports concussions are managed. Importantly, much of this research has included data that proves the usefulness of objective neuropsychological test data as part of the comprehensive clinical evaluation to determine clinical recovery following concussion. In fact, recent international concussion management guidelines have emphasized player symptoms and neuropsychological test results as “cornerstones” of the injury evaluation and management process.

While neuropsychological testing has become an increasingly useful tool, no published studies have examined the relationship between changes in computerized neuropsychological testing completed in a medical clinic and brain function as measured by fMRI. The lack of studies using fMRI may be due to the fact that studies of this nature are very expensive and equipment necessary to undertake this research is not readily available outside of a handful of academic medical centers. UPMC is one of few such centers with the capability of collecting both neurophysiological (fMRI) and neuropsychological data from injured and clinically managed athletes. fMRI is one of the few brain scanning tools that can show brain activity, not just the anatomy. Traditional brain scanning techniques such as MRI and CT are helpful in viewing changes to the brain anatomy in more severe cases, but cannot identify subtle brain-related changes that are believed to occur on a metabolic rather than an anatomic level. fMRI can determine, through measurement of cerebral blood flow and metabolic changes, which parts of the brain are activated in response to different cognitive activities.

fMRI reveals preliminary evidence and lays ground work for future research

“In our study, using fMRI, we demonstrate that the functioning of a network of brain regions is significantly associated with both the severity of concussion symptoms and time to recover,” said Jamie Pardini, Ph.D., a neuropsychologist on the clinical and research staff of the UPMC concussion program and co-author of the study. The study documented the link between changes in brain activation and clinical recovery in concussed athletes, which was defined as a complete resolution of symptoms and neuropsychological testing results that appeared within expected levels or back to the athlete’s personal baseline. “It is our view that studies establishing a link between brain physiology and neuropsychological testing help demonstrate the utility of neuropsychological testing as a proxy for direct measurement of brain functioning after concussion,” Dr. Pardini added.

The research project involved 28 concussed high school athletes and 13 age-matched controls. The concussed athletes underwent fMRI evaluation within approximately one week of injury and then again when they met criteria for clinical recovery. During their fMRI exams, the athletes were given working memory tasks to complete while the brain’s activity was observed and recorded. As a group, athletes who demonstrated the greatest degree of hyperactivation at the time of their first fMRI scan also demonstrated a more prolonged clinical recovery than did athletes who demonstrated less hyperactivation during their first fMRI scan. “We identified networks of brain regions where changes in functional activation were associated with performance on computerized neuropsychological testing and certain post-concussion symptoms,” reported Dr. Pardini. “Also, our study confirms previous research suggesting that there are neurophysiological abnormalities that can be measured even after a seemingly mild concussion,” she added. The study utilized a computer-based neuropsychological test called ImPACT™ (Immediate Post-Concussion and Cognitive Testing), which measures cognitive function such as attention, memory, speed of response and decision making. ImPACT was developed by Dr. Lovell and colleagues over the past decade and has been extensively researched by the University of Pittsburgh and other academic institutions throughout the world. Drs. Lovell and Collins have a proprietary interest in the ImPACT test as does UPMC. ImPACT Applications, Inc., is a Pittsburgh-based company that owns and licenses the ImPACT tool.

“Recent years have marked exciting and important discoveries in sports concussion research but there are still many unanswered questions,” said Dr. Lovell. “Continued research designed to evaluate multiple parameters of concussion effects and recovery will further help structure return-to-play guidelines.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Susan Manko
University of Pittsburgh Schools of the Health Sciences

Other authors of the study include James Becker, Ph.D., of the University of Pittsburgh; Joel Welling, Ph.D., Jennifer Bakal and William Eddy, Ph.D., of Carnegie-Mellon University; Nicole Lazar, Ph.D., of the University of Georgia, Athens, Ga.; and Rebecca Roush, Psychology Software Tools, Pittsburgh. The study was funded by a $3 million grant from the National Institutes of Health.

A player just took a hard knock to the head and is lying on the field. A coach rushes to his side, but the player sits up and seems fine.He knows who the president is and how many fingers the coach is holding up. But is he ready to get back in the game?

More than 750,000 mild traumatic brain injuries (mTBI) occur in the United States each year. When a player or soldier with even a mild concussion is sent back to the field, another blow to the head can lead to additional life long problems or even second impact syndrome, which has a mortality rate of up to 50 percent. But the injury is difficult to diagnose, even with a quiet room and a several-hour-long test.

Michelle LaPlaca, an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, and David Wright, assistant director of Emory University’s Emergency Medicine Research Center, have developed a new device to detect brain injuries right on the sidelines of a football game, on a battlefield or in the emergency room.

Called DETECT (Display Enhanced Testing for Concussions and mTBI system), the device is a fast, easy to administer and sensitive system for assessing problems associated with concussions. The DETECT device is an integrated system that includes software applications, a portable computer and an LCD display in the headgear.

While a typical mTBI test requires a quiet room and 1-2 hours of testing, DETECT performs neuropsychological tests in an immersive environment in about 7 minutes, regardless of surrounding noise and movement. So, a football player or soldier who just took a hard hit to the head can take the test and either be safely cleared to get back on the field or sent to receive medical attention.

The device blocks external stimuli that could interfere with testing, such as light and sound. This allows the test to be given in virtually any setting, even a bright football field with a roaring crowd.

When suffering from mTBI, a person will have difficulty with certain types of thinking controlled by a different areas of the brain, such as working memory, complex reaction and multi-tasking. DETECT runs the wearer through three types of neuropsychological tests that measure the function of several parts of the brain as it attempts to perform the tests.

For example, the first shows the wearer a series of shapes with different colors and textures and gives voice instructions. The wearer uses a simple controller (similar to a video game controller) to respond to the commands. The device then measures the wearer’s response times and answer selections. If the response time is too slow or the incorrect answers were provided, it indicates impairment.

The DETECT system includes a laptop to run the software, a head-mounted display, earmuffs that also act as headphones and an input device (controller). The display projects the visual aspect of the test, the headphones provide the verbal instructions and the controller records the wearer’s response.

In addition to the advantages of its speed and portability, DETECT can also be administered by a non-medical personnel such as a coach or parent rather than a trained neurophysiologist.

While the device has already been tested in the lab and in a hospital emergency room, the Georgia Tech football program recognizes the need for improved concussion assessment and plans to test this new technology.

DETECT may have other potential cognitive testing applications, such as helping assess cognitive impairment related to Alzheimer’s disease or drug use. The test would be brief and could be performed in a general physician’s office.

DETECT is expected to be commercially available in the next three to five years.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Megan McRainey
Georgia Institute of Technology

Steroid use by a Major League Baseball slugger may produce only modest increases in muscle mass and bat and ball speed but still boost home run production by 50 percent or more, according to a new study by Tufts University physicist Roger Tobin.

Tobin, a specialist in condensed matter physics with a long-time interest in the physics of baseball, will publish his paper “On the potential of a chemical Bonds: Possible effects of steroids on home run production in baseball” in an upcoming issue of the American Journal of Physics.

As Tobin’s paper notes, Babe Ruth’s record of 60 home runs in a single season stood for 34 years until Roger Maris hit 61 homers in 1961. For the next 35 years, no player hit more than 52 home runs in one season. But between 1998 and 2006, players hit more than 60 home runs in a season six times. Barry Bonds hit 73 home runs in 2001 — topping Maris’ mark by an astonishing 20 percent.

According to Tobin, the explosion in home runs coincides with the dawn of the “steroid era” in sports in the mid-1990s, and that surge quickly dropped to historic levels in 2003, when Major League Baseball instituted steroid testing.

While the increase in home runs has been clouded by suspected use of performance-enhancing steroids, many have wondered why home-running hitting would be particularly vulnerable to performance enhancement. They have also asked if it is even physically and physiologically plausible that steroids could produce effects of the magnitude observed. The answer to both questions, says Tobin, is “yes.”

Home Runs Disproportionately Affected

“A change of only a few percent in the average speed of the batted ball, which can reasonably be expected from steroid use, is enough to increase home run production by at least 50 percent,” he says. This disproportionate effect arises because home runs are relatively rare events that occur on the “tail of the range distribution” of batted balls.

“In most any statistical distribution — of people’s heights, SAT scores, or how far baseballs are hit — there’s a large bump where most of the values fall, with the graph falling rapidly as you move away from that region in either direction toward the rarer values,” explains Tobin. “It’s a well-known statistical property of such distributions that a relatively small shift in the center point of the distribution can produce a much larger proportional change in the number of values well above or below the center. Because the distribution’s ‘tail’ is particularly sensitive to small changes in the peak and/or width, home run records can be more strongly affected by steroid use than other athletic accomplishments.”

Muscle Mass Boosts Bat and Ball Speed

Tobin reviewed previous studies of the effect of steroid use and concluded that muscle mass, the force exerted by those muscles and the kinetic energy of the bat could each be increased by about 10 percent through the use of steroids. According to his calculations, the speed of the bat as it strikes the pitched ball will be about 5 percent higher than without the use of steroids and the speed of the ball as it leaves the bat will be about 4 percent higher.

To determine the ultimate impact on home run production, Tobin then analyzed a variety of models for trajectory of the baseball, accounting for gravity, air resistance and lift force due to the ball’s spin. While there was considerable variation among the models, “the salient point,” he says, “is that a 4 percent increase in ball speed, which can reasonably be expected from steroid use, can increase home run production by anywhere from 50 percent to 100 percent.”

What About the Pitchers?

Tobin applied a similar, though less extensive, mechanical analysis to pitching and found that smaller impacts were possible. He calculated that a 10 percent increase in muscle mass should increase the speed of a thrown ball by about 5 percent, or four to five miles per hours for a pitcher with a 90 mile per hour fastball. That translates to a reduction in earned run average of about 0.5 runs per game.

“That is enough to have a meaningful effect on the success of a pitcher, but it is not nearly as dramatic as the effects on home run production,” says Tobin. “The unusual sensitivity of home run production to bat speed results in much more dramatic effects, and focuses attention disproportionately on the hitters.”

A Reasonable Suspicion

Tobin is quick to acknowledge that athletes in many sports today achieve at a higher level than athletes of the past, and that this trend is not evidence of cheating. He also points out that many other changes, including adjustments in ballpark dimensions, league expansions, entry of African-American athletes, and lowering of the pitcher’s mound, could affect major league batting — although he says that none of those changes coincide with the sudden burst of home run production in the mid-1990s.

“Physics cannot tell us whether a particular home run was steroid-assisted, or even whether an extraordinary individual performance indicates the use of illicit means,” says Tobin.

But analysis of the physics, combined with physiology, yields telling results. “These results certainly do not prove that recent performances are tainted, but they suggest that some suspicion is reasonable,” he concludes.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university’s schools is widely encouraged.

Source: Kim Thurler
Tufts University