Archive for the ‘Vitamins’ Category

Don’t drink alcohol. Take vitamins. Avoid eating eggs. We’ve heard these pieces of nutritional advice for years – but are they accurate?

Not necessarily, say two exercise physiologists who presented at the American College of Sports Medicine (ACSM) 11th-annual Health & Fitness Summit & Exposition in Dallas, Texas. Wendy Repovich, Ph.D., FACSM, and Janet Peterson, Dr.P.H., FACSM, set out to debunk the “Top 10 Nutrition Myths.”

According to Repovich and Peterson, these nutrition myths are:

10. Eating carbohydrates makes you fat. Cutting carbs from your diet may have short-term weight loss benefits due to water loss from a decrease in carbohydrate stores, but eating carbs in moderation does not directly lead to weight gain. The body uses carbs for energy, and going too long without them can cause lethargy.

9. Drink eight, 8-oz. glasses of water per day. You should replace water lost through breathing, excrement and sweating each day – but that doesn’t necessarily total 64 ounces of water. It’s hard to measure the exact amount of water you have consumed daily in food and drink, but if your urine is pale yellow, you’re doing a good job. If it’s a darker yellow, drink more H2O.

8. Brown grain products are whole grain products. Brown dyes and additives can give foods the deceiving appearance of whole grain. Read labels to be sure a food is whole grain, and try to get three-ounce equivalents of whole grains per day to reduce the risk of heart disease, diabetes, and stroke.

7. Eating eggs will raise your cholesterol. This myth began because egg yolks have the most concentrated amount of cholesterol of any food. However, there’s not enough cholesterol there to pose health risks if eggs are eaten in moderation. Studies suggest that eating one egg per day will not raise cholesterol levels and that eggs are actually a great source of nutrients.

6. All alcohol is bad for you. Again, moderation is key. Six ounces of wine and 12 ounces of beer are considered moderate amounts, and should not pose any adverse health effects to the average healthy adult. All alcohol is an anticoagulant and red wine also contains antioxidants, so drinking a small amount daily can be beneficial.

5. Vitamin supplements are necessary for everyone. If you eat a variety of fruits, vegetables, and whole grains, along with moderate amounts of a variety of low-fat dairy and protein and the right quantity of calories, you don’t need to supplement. Most Americans do not, so a multi-vitamin might be good. Special vitamin supplements are also recommended for people who are pregnant or have nutritional disorders.

4. Consuming extra protein is necessary to build muscle mass. Contrary to claims of some protein supplement companies, consuming extra protein does nothing to bulk up muscle unless you are also doing significant weight training at the same time. Even then the increased requirement can easily come from food. A potential problem with supplements is the body has to work overtime to get rid of excess protein, and can become distressed as a result.

3. Eating fiber causes problems if you have irritable bowel syndrome (IBS). There are two kinds of fiber: soluble and insoluble. Insoluble fiber can cause problems in IBS sufferers; soluble fiber, however, is more easily absorbed by the body and helps prevent constipation for those with IBS. Soluble fiber is found in most grains.

2. Eating immediately after a workout will improve recovery. Endurance athletes need to take in carbohydrates immediately after a workout to replace glycogen stores, and a small amount of protein with the drink enhances the effect. Drinking low-fat chocolate milk or a carbohydrate drink, like Gatorade, is better for the body, as they replace glycogen stores lost during exercise. Protein is not going to help build muscle, so strength athletes do not need to eat immediately following their workout.

1. Type 2 diabetes can be prevented by eating foods low on the glycemic index. High levels of glucose are not what “cause” diabetes; the disease is caused by the body’s resistance to insulin. Foods high on the glycemic index can cause glucose levels to spike, but this is just an indicator of the presence of diabetes, not the root cause.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Communications and Public Information
American College of Sports Medicine

The American College of Sports Medicine is the largest sports medicine and exercise science organization in the world. More than 20,000 International, National and Regional members are dedicated to promoting and integrating scientific research, education and practical applications of sports medicine and exercise science to maintain and enhance physical performance, fitness, health and quality of life.

Advertisements

Lower muscle mass and an increase in body fat are common consequences of growing older.

While exercise is a proven way to prevent the loss of muscle mass, a new study led by McMaster researcher Dr. Mark Tarnopolsky shows that taking a combination of creatine monohydrate (CrM) and conjugated linoleic acid (CLA) in addition to resistance exercise training provides even greater benefits.

The study to be published on Oct. 3 in PLoS One, an international, peer-reviewed online journal of the Public Library of Science, involved 19 men and 20 women who were 65 years or older and took part in a six-month program of regular resistance exercise training.

In the randomized double blind trial, some of the participants were given a daily supplement of creatine (a naturally produced compound that supplies energy to muscles) and linoleic acid (a naturally occurring fatty acid), while others were given a placebo. All participants took part in the same exercise program.

The exercise training resulted in improvements of functional ability and strength in all participants, but those taking the CrM and CLA showed even greater gains in muscle endurance, an increase in fat-free mass and a decrease in the percentage of body fat.

“This data confirms that supervised resistance exercise training is safe and effective for increasing strength and function in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six month period,” said Tarnopolsky, a professor of pediatrics and medicine.

This study provides functional outcomes that build on an earlier mechanistic study co-led by Tarnopolsky and Dr. S. Melov at the Buck Institute of Age Research, published in PLoS One this year, which provided evidence that six months of resistance exercise reversed some of the muscle gene expression abnormalities associated with the aging process.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Veronica McGuire
McMaster University

Consuming caffeine, whether in coffee of soft drinks, has been shown to delay fatigue during prolonged exercise. Studies have shown, for example, that ingesting three to nine mg/kg of caffeine can increase the amount of exercise time to achieve by as much as 50 percent. How caffeine achieves this effect has not been fully determined.

Caffeine and the Central Nervous System (CNS) Study

No previous research effort has examined the possible direct central nervous system (CNS) effects of caffeine on fatigue during prolonged exercise. Now, a team of researchers from the University of South Carolina has hypothesized that the blockade of adenosine receptors by caffeine may be the most likely mechanism of CNS stimulation and delayed fatigue.

Their theory is based on the fact that adenosine is produced within the body and inhibits neuronal excitability and synapse transmission. Adenosine also inhibits the release of most brain excitatory neurotransmitters, particularly dopamine (DA), and may reduce DA synthesis. Decreases in dopamine (DA), along with increases in 5-HT (serotonin, which is generally associated with behavioral suppression), have been linked to central fatigue during exercise. In addition, adenosine has been shown to reduce arousal, induce sleep, and suppress spontaneous activity, which are all behaviors associated with increases in 5-HT.

The researchers’ hypothesis is the foundation of a new study to determine the effects of intracerebroventricular injection of caffeine and the adenosine A1 and A2 receptor agonist 5′-N-ethylcarboxamidoadenosine (NECA) on treadmill run time to fatigue in rats. NECA was chosen for the study because caffeine is a nonselective adenosine receptor antagonist, and it is not known which of the four subtypes of adenosine receptors may be involved in an effect of caffeine on fatigue. However, A2b and A3 receptors are relatively less active than A1 and A2a receptors under normal physiological conditions. If the researchers were correct, the CNS administration of caffeine will increase run time to fatigue, whereas NECA will reduce run time to fatigue. Furthermore, pretreatment with caffeine before NECA will weaken the fatigue-inducing effects of NECA.

The authors of “Central Nervous System Effects of Caffeine and Adenosine on Fatigue,” are J. Mark Davis, Zuowei Zhao, Howard S. Stock, Kristen A. Mehl, James Buggy, and Gregory A. Hand, all from the Schools of Public Health and Medicine, University of South Carolina, Columbia, SC. Their findings appear in the February 2003 edition of the American Journal of Physiology –Regulatory, Integrative and Comparative Physiology. The journal is one of 14 peer-reviewed publications produced monthly by the American Physiological Society (APS).

Methodology

Male Wistar rats, five weeks old and weighing 200-250 grams, were used in this study, and randomly assigned to intracerebroventricular or intraperitoneal injection groups. Rats were given two weeks of treadmill acclimation of running for 15 minutes a day. The treadmill speed was slowly increased from eight meters a minute, 7.5 percent grade at the beginning, progressing to 20 meters a minute at the end of the acclimation period. Gentle hand prodding and mild electric shock were combined to encourage the animals to run throughout the study.

After the first two weeks of acclimation, rats assigned to the intracerebroventricular group were anesthetized with pentobarbital sodium, and tubes were implanted bilaterally into the lateral ventricles. After seven days of recovery from surgery, the rats were again acclimated to treadmill running for another one to two weeks, until they were able to run easily for at least 15 minutes per day for 5 consecutive days at a speed of 20 meters a minute at a 7.5 percent grade. Animals that were unable to run at that pace were excluded.

Four drug treatments were used in the study: NECA, caffeine, caffeine plus NECA, and a vehicle solution (Normosol-R). The vehicle solution has been used as a control solution in other studies involving intracerebroventricular infusions of drugs and tissue microdialysis. In the CNS groups (n = 10), each rat was injected intracerebroventricularly with one of the four drugs (NECA, caffeine, caffeine plus NECA, or vehicle) in one testing session. The other drugs were then given in successive testing sessions at one-week intervals to allow full recovery from the exercise bout and washout of the drugs. On two days during the recovery period, all rats were exercised for 15 minutes to maintain acclimation to the treadmill protocol. All rats received all four-drug treatments in a randomized and counterbalanced design to minimize possible order effects.

Results
The major findings of this study revealed that:

  • CNS administration of caffeine at a dose of 200 µg/rat (0.6 mg/kg), which is much less than the effective dose given peripherally (6 mg/kg), does increase treadmill run time to fatigue in rats by approximately 60 percent;
  • the same dose of caffeine given peripherally (intraperitoneally) is ineffective.
  • the results supported the researchers’ hypothesis that intracerebroventricular CNS administration of the selective adenosine A1 and A2 receptor agonist NECA significantly reduced run time to fatigue, whereas intracerebroventricular caffeine increased run time to fatigue.
  • inhibitory effects of NECA on run time to fatigue were also reversed by intracerebroventricular pretreatment with caffeine, suggesting that the ergogenic effects of intracerebroventricular caffeine are mediated through blockade of the adenosine receptors.
  • CNS administration of the adenosine receptor agonist NECA inhibited treadmill run time to fatigue and spontaneous locomotor activity in rats.
  • pretreatment with caffeine blocked the inhibitory effects of NECA on exercise performance, although not on spontaneous behavioral activity.
  • peripheral (intraperitoneal) administration of the same drugs at the same doses had no effect on treadmill run time to fatigue.

Conclusions

These results indicate that caffeine can act specifically within the CNS to delay fatigue, at least in part by blocking adenosine receptors. Because caffeine easily crosses the BBB, these results also suggest that the CNS also plays an important role in the ergogenic effect of caffeine ingestion.

The precise independent contribution of caffeine at the central (behavioral) and peripheral (metabolic) levels awaits further research. The researchers argue that some interaction at both levels is likely.

—————————-
Article adapted by MD Only Sports Weblog from original press release.
—————————-

Contact: Donna Krupa
American Physiological Society

Source: February 2003 edition of the American Journal of Physiology– Regulatory, Integrative and Comparative Physiology

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

The serious athlete knows better than to rely just on a famous cereal to provide additional energy in preparation of a sporting event. Supplements have assumed an important role in today’s training regimen. Some – such as anabolic steroids — have been deemed illegal by most sports authorities. Others – such as caffeine and creatine — are controversial yet presently allowed.Background
Caffeine, the primary ingredient of coffee, is used as a central nervous system stimulant, diuretic, circulatory and respiratory stimulant, and as an adjunct in the treatment of headaches. Evidence shows that caffeine intensifies muscle contractions, masks the discomfort of physical exertion, and even speeds up the use of the muscles’ short-term fuel stores. Some exercise physiologists believe that caffeine might improve performance by increasing fat oxidation and conserving muscle glycogen.

Creatine is used by athletes to increase lean body mass and improve performance in single and repetitive high-intensity, short-duration exercise tasks such as weightlifting, sprinting, and cycling. It is a popular nutritional supplement that is used by physically active people – from recreational exercisers to Olympic and professional athletes. According to a recent survey, 28 percent of athletes in an NCAA Division IA program reported using creatine. The creatine that is normally present in human muscle may come from two potential sources: dietary (animal flesh) and internally manufactured.

The purpose of creatine supplementation is to increase either total creatine stores or phosphocreatine (PCr) stores within muscle. Supplementation increases the rate of resynthesis of creatine phosphate following exercise. Various studies have shown increased muscle PCr levels after supplementing with 20-30 grams of creatine monohydrate daily.

Creatine supplementation has also been known to shorten relaxation time during intermittent maximal iosometric muscle contraction. This shortened time, coupled with a creatine loaded muscle facilitates calcium absorption into the sarcoplasmic reticulum (the endoplasmic reticulum of skeletal and cardiac muscle). However, some believe that caffeine intake enhances calcium release from the sarcoplasmic reticulum.

The Study
This has lead a research team from Belgium to suggest that the combined effects of creatine and caffeine supplementation may be counterproductive to creatine’s effect on muscle relaxation time. The authors of the study, “Opposite Actions of Caffeine and Creatine on Muscle Relaxation Time in Humans” are P. Hespel, B. Op ‘T Eijnde, and M. Van Leemputte, all from the Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium. Their findings appear in the February 2002 edition of the Journal of Applied Physiology.

Methodology
Ten physical education students (nine men and one woman) participated in the study. They were told to abstain from medication and caffeine intake one week prior to the experiment. The subjects were additionally asked to avoid changes in their level of physical activity and diet during the 25-week duration of the study. In this double blind experiment, the subjects performed the exercise test before and after creatine supplementation, short-term caffeine intake, creatine supplementation in the short term, acute caffeine intake, or a placebo.

This study required the random assignment of the students into five experimental protocols, each lasting eight days. Three elements were measured during an experiment consisting of 30 intermittent contractions of quadriceps entailing two seconds of stimulation and two seconds of rest. Measurements included maximum torque (Tmax), contraction time (CT) from 0.25 to 0.75 of Tmax, and relaxation time (RT) from 0.75 to 0.25 of max.

Results
Key findings of this study included:

· a confirmation of the fact that oral creatine supplementation shortens muscle relaxation time in humans: relation time was reduced by five percent and was significantly shorter than after the placebo;

· discovery that the intake of caffeine, combined with a daily creatine supplement, counteracted the beneficial effects of creatine intake on relaxation time and fatigue enhanced this inhibitory effect; and

· the observation that caffeine reduces the functional capacity of sacroplasmic reticulum calcium ATPase.

Conclusion The researchers believe that the findings from this experiment offer indirect evidence that suggests that facilitation of muscle relaxation may be important to the ergogenic action of creatine supplementation as well as power production during sprint exercises.

However, for the athlete in training, the key finding is that sustained caffeine intake, over a three-day period, negates the benefits of creatine supplements.

—————————-
Article adapted by MD Only Sports Weblog from original press release.
—————————-

Contact: Donna Krupa
American Physiological Society

Active individuals lacking in B-vitamins – including college athletes and other elite competitors — may perform worse during high-intensity exercise and have a decreased ability to repair and build muscle than counterparts with nutrient-rich diets, according to recent Oregon State University research published in the International Journal of Sport Nutrition and Exercise Metabolism.The B-vitamins include thiamin, riboflavin, vitamin B-6, B-12 and folate. These micronutrients are necessary during the body’s process for converting proteins and sugars into energy, and are used during the production and repair of cells, including red blood cells.

For active individuals a marginal deficiency in the nutrients may impact the body’s ability to repair itself, operate efficiently and fight disease, said Melinda Manore, researcher in the Colleges of Agricultural and Health and Human Sciences. Manore analyzed the athletic performance of several elite and collegiate athletes in her research, as well as less competitive individuals.

The stress on the body’s energy producing pathways during exercise, the changes in the body’s tissues resulting from training, an increase in the loss of nutrients in sweat, urine and feces during and after strenuous activity and the additional nutrients needed to repair and maintain higher levels of lean tissue mass present in some athletes and individuals may all affect an individuals B-vitamin requirements, said Manore.

“Many athletes, especially young athletes involved in highly competitive sports, do not realize the impact their diets have on their performance,” said Manore, who is also an Extension Service nutrition scientist. “By the time they reach adulthood they can have seriously jeopardized their abilities and their long-term health.”

Current national B-vitamin recommendations for active individuals may be inadequate, and athletes who follow the recommended daily allowances set by the U.S. government may be receiving lower amounts of nutrients than there bodies need, said Manore. Athletes who restrict calories or limit food groups like dairy or meat have an increased chance of deficiency. Such athletes are often concerned about maintaining a low body weight for sports like gymnastics and wrestling.

“The most vulnerable people are often the individuals society expects to be the healthiest,” said Manore. “There’s a lot of pressure on women in particular to look like an ‘athlete.’ Unfortunately for some people that means skinny and petite, rather than healthy and strong.”

The B-vitamins are in whole and enriched grains, dark green vegetables, nuts, and many animal and dairy products. Manore suggests athletes and individuals with poor or restricted diets consider taking a multivitamin or mineral supplement.

—————————-
Article adapted by MD Only Sports Weblog from original press release.
—————————-

 

Contact: Melinda Manore
Oregon State University