Archive for the ‘Women Health’ Category

Women who walked two or more hours a week or who usually walked at a brisk pace (3 miles per hour or faster) had a significantly lower risk of stroke than women who didn’t walk, according to a large, long-term study reported in Stroke: Journal of the American Heart Association.

The risks were lower for total stroke, clot-related (ischemic) stroke and bleeding (hemorrhagic) stroke, researchers said.

Compared to women who didn’t walk:

  • Women who usually walked at a brisk pace had a 37 percent lower risk of any type of stroke and those who walked two or more hours a week had a 30 percent lower risk of any type of stroke.
  • Women who typically walked at a brisk pace had a 68 percent lower risk of hemorrhagic stroke and those who walked two or more hours a week had a 57 percent lower risk of hemorrhagic stroke.
  • Women who usually walked at a brisk pace had a 25 percent lower risk of ischemic stroke and those who usually walked more than two hours a week had a 21 percent lower risk of ischemic stroke — both “borderline significant,” according to researchers.

“Physical activity, including regular walking, is an important modifiable behavior for stroke prevention,” said Jacob R. Sattelmair, M.Sc., lead author and doctoral candidate in epidemiology at Harvard School of Public Health in Boston, Mass. “Physical activity is essential to promoting cardiovascular health and reducing risk of cardiovascular disease, and walking is one way of achieving physical activity.”

More physically active people generally have a lower risk of stroke than the least active, with more-active persons having a 25 percent to 30 percent lower risk for all strokes, according to previous studies.

“Though the exact relationship among different types of physical activity and different stroke
subtypes remains unclear, the results of this specific study indicate that walking, in particular, is associated with lower risk of stroke,” Sattelmair said.

Researchers followed 39,315 U.S. female health professionals (average age 54, predominantly white) participating in the Women’s Health Study. Every two to three years, participants reported their leisure-time physical activity during the past year — specifically time spent walking or hiking, jogging, running, biking, doing aerobic exercise/aerobic dance, using exercise machines, playing tennis/squash/racquetball, swimming, doing yoga and stretching/toning. No household, occupational activity or sedentary behaviors were assessed.

They also reported their usual walking pace as no walking, casual (about 2 mph), normal (2.9 mph), brisk (3.9 mph) or very brisk (4 mph).

Sattelmair noted that walking pace can be assessed objectively or in terms of the level of exertion, using a heart rate monitor, self-perceived exertion, “or a crude estimate such as the ‘talk test’ – wherein, for a brisk pace, you should be able to talk but not able to sing. If you cannot talk, slow down a bit. If you can sing, walk a bit faster.”

During 11.9 years of follow-up, 579 women had a stroke (473 were ischemic, 102 were hemorrhagic and four were of unknown type).

The women who were most active in their leisure time activities were 17 percent less likely to have any type of stroke compared to the least-active women.

Researchers didn’t find a link between vigorous activity and reduced stroke risk. The reason is unclear, but they suspect that too few women reported vigorous activity in the study to get an accurate picture and/or that moderate-intensity activity may be more effective at lowering blood pressure as suggested by some previous research.

Stroke is the third leading cause of death and a leading cause of serious disability in the United States, so it’s important to identify modifiable risk factors for primary prevention, Sattelmair said.

An inverse association between physical activity and stroke risk is consistent across genders. But there tend to be differences between men and women regarding stroke risk and physical activity patterns.

“The exact relation between walking and stroke risk identified in this study is not directly generalizable to men,” Sattelmair said. “In previous studies, the relation between walking and stroke risk among men has been inconsistent.”

The study is limited because it was observational and physical activity was self-reported. But strengths are that it was large and long-term with detailed information on physical activity, he said.

Further study is needed on more hemorrhagic strokes and with more ethnically diverse women, Sattelmair said.

The American Heart Association recommends for substantial health benefits, adults should do at least 150 minutes a week of moderate-intensity or 75 minutes a week of vigorous-intensity aerobic physical activity or a combination.

———————————–
Article adapted by MD Sports from original press release.
———————————–
Contact: Birdgette McNeill
American Heart Association

Advertisements

“No pain, no gain.” So say those working out to build up their muscles, and on a cellular level it is a pretty accurate description of how muscle mass increases. Exercise causes tears in muscle membrane and the healing process produces an increased amount of healthy muscle. Implicit in this scenario is the notion that muscle repair is an efficient and ongoing process in healthy individuals. However, the repair process is not well understood. New University of Iowa research into two types of muscular dystrophy now has opened the door on a muscle repair process and identified a protein that plays a critical role.

The protein, called dysferlin, is mutated in two distinct muscular dystrophies known as Miyoshi Myopathy and limb-girdle muscular dystrophy type 2b. The UI study suggests that in these diseases, the characteristic, progressive muscle degeneration is due to a faulty muscle-repair mechanism rather than an inherent weakness in the muscle’s structural integrity. The research findings reveal a totally new cellular cause of muscular dystrophy and may lead to many discoveries about normal muscle function and to therapies for muscle disorders.

The research team led by Kevin Campbell, Ph.D., the Roy J. Carver Chair of Physiology and Biophysics and interim head of the department, UI professor of neurology, and a Howard Hughes Medical Institute (HHMI) Investigator, studied the molecular consequences of losing dysferlin and discovered that without dysferlin muscles were unable to heal themselves.

The UI team genetically engineered mice to lack the dysferlin gene. Just like humans with Miyoshi Myopathy and limb-girdle muscular dystrophy type 2b, the mice developed a muscular dystrophy, which gets progressively worse with age. However, treadmill tests revealed that the muscles of mice that lack dysferlin were not much more susceptible to damage than the muscles of normal mice. This contrasts with most muscular dystrophies of known cause where genetic mutations weaken muscle membranes and make muscles more prone to damage.

“This told us that the dystrophies caused by dysferlin loss were very different in terms of how the disease process works compared to other dystrophies we have studied,” Campbell said. “We were gradually picking up clues that showed we had a different type of muscular dystrophy here.”

Most muscular dystrophy causing genetic mutations have been linked to disruption of a large protein complex that controls the structural integrity of muscle cells. The researchers found that dysferlin was not associated with this large protein complex. Rather, dysferlin is normally found throughout muscle plasma membrane and also in vesicles, which are small membrane bubbles that encapsulate important cellular substances and ferry them around cells. Vesicles also are important for moving membrane around in cells.

Previous studies have shown that resealing cell membranes requires the accumulation and fusing of vesicles to repair the damaged site.

Using an electron microscope to examine muscles lacking dysferlin, the UI team found that although vesicles gathered at damaged membrane sites, the membrane was not resealed. In contrast, the team discovered that when normal muscle is injured, visible “patches” form at the damaged sites, which seal the holes in the membrane. Chemicals that tag dysferlin proved that these “patches” were enriched with dysferlin and the patches appeared to be formed by the fusion of dysferlin-containing vesicles that traveled though the cell to the site of membrane damage.

The researchers then used a high-powered laser and a special dye to visualize the repair process in real time.

Under normal conditions, the dye is unable to penetrate muscle membrane. However, if the membrane is broken the dye can enter the muscle fiber where it fluoresces. Using the laser to damage a specific area of muscle membrane, the researchers could watch the fluorescence increase as the dye flowed into the muscle fiber.

“The more dye that entered, the more fluorescence we saw,” Campbell explained. “However, once the membrane was repaired, no more dye could enter and the level of fluorescence remained steady. Measuring the increase in fluorescence let us measure the amount of time that the membrane stayed open before repair sealed the membrane and prevented any more dye from entering.”

In the presence of calcium, normal membrane repaired itself in about a minute. In the absence of calcium, vesicles gathered at the damaged muscle membrane, but they did not fuse with each other or with the membrane and the membrane was not repaired. In muscle that lacked dysferlin, even in the presence of calcium, the damaged site was not repaired.

Campbell speculated that dysferlin, which contains calcium-binding regions, may be acting as a calcium sensor and that the repair system needs to sense the calcium in order to initiate the fusion and patching of the hole. Campbell added that purifying the protein and testing its properties should help pin down its role in the repair process.

The discovery of a muscle repair process and of dysferlin’s role raises many new questions. In particular, Campbell wonders what other proteins might be involved and whether defects in those components could be the cause of other muscular dystrophies.

“This work has described a new physiological mechanism in muscle and identified a component of this repair process,” Campbell said. “What is really exciting for me is the feeling that this is just a little hint of a much bigger picture.”

In addition to Campbell, the UI researchers included Dimple Bansal, a graduate student in Campbell’s laboratory and the lead author of the paper, Severine Groh, Ph.D., and Chien-Chang Chen, Ph.D., both UI post-doctoral researchers in physiology and biophysics and neurology, and Roger Williamson, M.D., UI professor of obstetrics and gynecology. Also part of the research team were Katsuya Miyake, Ph.D., a postdoctoral researcher, and Paul McNeil, Ph.D., a professor of cellular biology and anatomy at the Medical College of Georgia in Augusta, Ga., and Steven Vogel, Ph.D., at the Laboratory of Molecular Physiology at the National Institute of Alcohol Abuse and Alcoholism, Rockville, Md.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jennifer Brown
University of Iowa 

The study was funded by a grant from the Muscular Dystrophy Association.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide.

University of Pittsburgh School of Medicine researchers have successfully used gene therapy to accelerate muscle regeneration in experimental animals with muscle damage, suggesting this technique may be a novel and effective approach for improving skeletal muscle healing, particularly for serious sports-related injuries. These findings are being presented at the American Society of Gene Therapy annual meeting in Baltimore, May 31 to June 4.

Skeletal muscle injuries are the most common injuries encountered in sports medicine. Although such injuries can heal spontaneously, scar tissue formation, or fibrosis, can significantly impede this process, resulting in incomplete functional recovery. Of particular concern are top athletes, who, when injured, need to recover fully as quickly as possible.
In this study, the Pitt researchers injected mice with a gene therapy vector containing myostatin propeptide–a protein that blocks the activity of the muscle-growth inhibitor myostatin–three weeks prior to experimentally damaging the mice’s skeletal muscles. Four weeks after skeletal muscle injury, the investigators observed an enhancement of muscle regeneration in the gene-therapy treated mice compared to the non-gene-therapy treated control mice. There also was significantly less fibrous scar tissue in the skeletal muscle of the gene-therapy treated mice compared to the control mice.
According to corresponding author Johnny Huard, Ph.D., the Henry J. Mankin Endowed Chair and Professor in Orthopaedic Surgery, University of Pittsburgh School of Medicine, and Director of the Stem Cell Research Center of Children’s Hospital of Pittsburgh, this approach offers a significant, long-lasting method for treating serious, sports-related muscle injuries.
“Based on our previous studies, we expect that gene-therapy treated cells will continue to overproduce myostatin propeptide for at least two years. Since the remodeling phase of skeletal muscle healing is a long-term process, we believe that prolonged expression of myostatin propeptide will continue to contribute to recovery of injured skeletal muscle by inducing an increase in muscle mass and minimizing fibrosis. This could significantly reduce the amount of time an athlete needs to recover and result in a more complete recovery,” he explained.
###
Others involved in this study include, Jinhong Zhu, M.D., Yong Li, M.D., Ph.D., of the Growth and Development Laboratory, Children’s Hospital of Pittsburgh; and Chunping Qiao, M.D., and Xiao Xiao, M.D., Ph.D., of the Molecular Therapies Laboratory, department of orthopaedic surgery, University of Pittsburgh School of Medicine.
University of Pittsburgh School of Medicine researchers have successfully used gene therapy to accelerate muscle regeneration in experimental animals with muscle damage, suggesting this technique may be a novel and effective approach for improving skeletal muscle healing, particularly for serious sports-related injuries.
Skeletal muscle injuries are the most common injuries encountered in sports medicine. Although such injuries can heal spontaneously, scar tissue formation, or fibrosis, can significantly impede this process, resulting in incomplete functional recovery. Of particular concern are top athletes, who, when injured, need to recover fully as quickly as possible.
In this study, the Pitt researchers injected mice with a gene therapy vector containing myostatin propeptide–a protein that blocks the activity of the muscle-growth inhibitor myostatin–three weeks prior to experimentally damaging the mice’s skeletal muscles. Four weeks after skeletal muscle injury, the investigators observed an enhancement of muscle regeneration in the gene-therapy treated mice compared to the non-gene-therapy treated control mice. There also was significantly less fibrous scar tissue in the skeletal muscle of the gene-therapy treated mice compared to the control mice.
According to corresponding author Johnny Huard, Ph.D., the Henry J. Mankin Endowed Chair and Professor in Orthopaedic Surgery, University of Pittsburgh School of Medicine, and Director of the Stem Cell Research Center of Children’s Hospital of Pittsburgh, this approach offers a significant, long-lasting method for treating serious, sports-related muscle injuries.
“Based on our previous studies, we expect that gene-therapy treated cells will continue to overproduce myostatin propeptide for at least two years. Since the remodeling phase of skeletal muscle healing is a long-term process, we believe that prolonged expression of myostatin propeptide will continue to contribute to recovery of injured skeletal muscle by inducing an increase in muscle mass and minimizing fibrosis. This could significantly reduce the amount of time an athlete needs to recover and result in a more complete recovery,” he explained.
———————————–
Article adapted by MD Sports from original press release.
———————————–
Contact: Jim Swyers

Others involved in this study include, Jinhong Zhu, M.D., Yong Li, M.D., Ph.D., of the Growth and Development Laboratory, Children’s Hospital of Pittsburgh; and Chunping Qiao, M.D., and Xiao Xiao, M.D., Ph.D., of the Molecular Therapies Laboratory, department of orthopaedic surgery, University of Pittsburgh School of Medicine.

ATHENS, Ohio – Men over 60 may be able to increase their strength by as much as 80 percent by performing intense weight training exercises, according to physiologists involved in studies of the health benefits of weight lifting. The researchers also have found that older men gain strength at the same rate as men in their 20s.

In a study of 18 men ages 60 to 75, Ohio University physiologists found that subjects who participated in a 16-week, high-intensity resistence training program on average were 50 percent to 80 percent stronger by the end of the study. None of the participants had engaged in weight lifting prior to the study. Researchers also observed improvements in the seniors’ muscle tone, aerobic capacity and cholesterol profile.

These are some of the latest findings from a decades-long examination of the impact of exercise on the health of men and women of all ages. When researchers compared the strength gains of the elderly participants in this study to findings from other studies they’ve done of college-age men, they found that changes in strength and muscle size were similar in both age groups. The findings were published in a recent issue of the Journal of Gerontology.

“There have been a number of research projects that have come out over the years that suggest there is no age limitation to getting stronger from resistance training,” said Robert Staron, co-author of this study and an associate professor of anatomy in the university’s College of Osteopathic Medicine. “It’s become obvious that it’s important to maintain a certain amount of muscle mass as we age.”

This new study also suggests that elderly men can handle heavy workloads over a long period of time. Participants – who all were in good health and closely monitored during testing and training – performed leg presses, half squats and leg extensions twice a week to exercise the lower body. When the men began the study, they were able to leg press about 375 pounds on average. After the 16-week period, they could take on about 600 pounds. Studies elsewhere have involved low-intensity exercises over a shorter term.

In addition to the increase in strength, researchers found that weight lifting had a beneficial impact on the participants’ cardiovascular system. Tests on an exercise treadmill showed that their bodies used oxygen more efficiently after weight training.

“The individuals run until they are completely exhausted, and it took longer for them to reach that point after resistance training,” Staron said.

Blood samples taken before and after weight training also showed favorable changes in participants’ overall cholesterol profiles, he said, including increases in HDL cholesterol levels and decreases in LDL cholesterol levels.

Losing muscle tone and strength is not uncommon for many senior citizens, Staron said, but this research suggests that a lack of physical exercise can contribute to the problem.

“Certainly, inactivity does play a role in contributing to the decrease in muscle mass,” Staron said. “If we can maintain a certain level of strength through exercise, our quality of life should be better as we age.”

Before beginning a weight lifting regimen, it’s a good idea to consult a physician, Staron advised, adding that it’s also important to learn proper weight lifting techniques. Staron and his colleagues now have turned their attention to how certain weight training routines impact young people.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Andrea Gibson
Ohio University

Collaborators on this project are Fredrick Hagerman, Robert Hikida and Thomas Murray of the College of Osteopathic Medicine, former graduate student Seamus Walsh, Roger Gilders of the College of Health and Human Services, Kumika Toma of the College of Arts and Sciences and Kerry Ragg of the Student Health Service.

University Park, Pa. – Female athletes often lose their menstrual cycle when training strenuously, but researchers have long speculated on whether this infertility was due to low body fat, low weight or exercise itself. Now, researchers have shown that the cause of athletic amenorrhea is more likely a negative energy balance caused by increasing exercise without increasing food intake.

“A growing proportion of women are susceptible to losing their menstrual cycle when exercising strenuously,” says Dr. Nancy I. Williams, assistant professor of kineseology and physiology at Penn State. “If women go six to 12 months without having a menstrual cycle, they could show bone loss. Bone densities in some long distance runners who have gone for a prolonged time period without having normal menstrual cycles can be very low.”

In studies done with monkeys, which show menstrual cyclicity much like women, researchers showed that low energy availability associated with strenuous exercise training plays an important role in causing exercise-induced amenorrhea. These researchers, working at the University of Pittsburgh, published findings in the Journal of Clinical Endocrinology and Metabolism showing that exercise-induced amenorrhea was reversible in the monkeys by increasing food intake while the monkeys still exercised.

Williams worked with Judy L. Cameron, associate professor of psychiatry and cell biology and physiology at the University of Pittsburgh. Dana L. Helmreich and David B. Parfitt, then graduate students, and Anne Caston-Balderrama, at that time a post-doctoral fellow at the University of Pittsburgh, were also part of the research team. The researchers decided to look at an animal model to understand the causes of exercise-induced amenorrhea because it is difficult to closely control factors, such as eating habits and exercise, when studying humans. They chose cynomolgus monkeys because, like humans, they have a menstrual cycle of 28 days, ovulate in mid-cycle and show monthly periods of menses.

“It is difficult to obtain rigorous control in human studies, short of locking people up,” says Williams.

Previous cross-sectional studies and short-term studies in humans had shown a correlation between changes in energy availability and changes in the menstrual cycle, but those studies were not definitive.

There was also some indication that metabolic states experienced by strenuously exercising women were similar to those in chronically calorie restricted people. However, whether the increased energy utilization which occurs with exercise or some other effect of exercise caused exercise-induced reproductive dysfunction was unknown.

“The idea that exercise or something about exercise is harmful to females was not definitively ruled out,” says Williams. “That exercise itself is harmful would be a dangerous message to put out there. We needed to look at what it was about exercise that caused amenorrhea, what it was that suppresses ovulation. To do that, we needed a carefully controlled study.”

After the researchers monitored normal menstrual cycles in eight monkeys for a few months, they trained the monkeys to run on treadmills, slowly increasing their daily training schedule to about six miles per day. Throughout the training period the amount of food provided remained the standard amount for a normal 4.5 to 7.5 pound monkey, although the researchers note that some monkeys did not finish all of their food all of the time.

The researchers found that during the study “there were no significant changes in body weight or caloric intake over the course of training and the development of amenorrhea.” While body weight did not change, there were indications of an adaptation in energy expenditure. That is, the monkeys’ metabolic hormones also changed, with a 20 percent drop in circulating thyroid hormone, suggesting that the suppression of ovulation is more closely related to negative energy balance than to a decrease in body weight.

To seal the conclusion that a negative energy balance was the key to exercise-induced amenorrhea, the researchers took four of the previous eight monkeys and, while keeping them on the same exercise program, provided them with more food than they were used to. All the monkeys eventually resumed normal menstrual cycles. However, those monkeys who increased their food consumption most rapidly and consumed the most additional food, resumed ovulation within as little as 12 to 16 days while those who increased their caloric intake more slowly, took almost two months to resume ovulation.

Williams is now conducting studies on women who agree to exercise and eat according to a prescribed regimen for four to six months. She is concerned because recreational exercisers have the first signs of ovulatory suppression and may easily be thrust into amenorrhea if energy availability declines. Many women that exercise also restrict their calories, consciously or unconsciously.

“Our goal is to test whether practical guidelines can be developed regarding the optimal balance between calories of food taken in and calories expended through exercise in order to maintain ovulation and regular menstrual cycles,” says Williams. “This would then ensure that estrogen levels were also maintained at healthy levels. This is important because estrogen is a key hormone in the body for many physiological systems, influencing bone strength and cardiovascular health, not just reproduction.”

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: A’ndrea Elyse Messer
Penn State

Research news from Journal of Mass Spectrometry

A new mass spectrometry test can help sports anti-drug doping officials to detect whether an athlete has used drugs that boost naturally occurring steroid levels. The test is more sensitive compared to previous alternatives, more capable of revealing specific suspicious chemical in the body, faster to perform, and could be run on standard drug-screening laboratory equipment. The new test is announced in a special issue of the Journal of Mass Spectrometry that concentrates on detecting drugs in sports.

One of the roles of the masculinising hormone testosterone is to increase muscle size and strength. Taking extra testosterone, or taking a chemical that the body can use to create extra testosterone, could therefore enhance an athlete’s performance. For this reason taking it is banned by the World Anti-Doping Agency (WADA).

The exact level of testosterone varies considerably between different people, so simply measuring total testosterone in an athlete’s urine can not show whether he or she has deliberately taken extra. There is, however, a second chemical in the body, epitestosterone, which is normally present in approximately equal proportions to testosterone. Comparing the ratio of testosterone to epitestosterone can then indicate whether testosterone or a precursor has been taken.

The problem is that it is not always easy to measure these two substances, particularly as they are only present in urine at very low concentrations.

A team of scientists the Sports Medicine Research and Testing Laboratory at the University of Utah have developed a test that makes use of liquid chromatography-tandem mass spectrometry. This method has incredibly high sensitivity (down to 1 ng/ml) and increases the power with which officials can search for both testosterone and epitestosterone within a sample.

“Our system means that we can determine the testosterone/epitestosterone ratio in a sample with greater confidence, and therefore be in a better position to spot doping violations without falsely accusing innocent athletes,” says lead investigator Dr Jonathan Danaceau.

“Not only is the test more sensitive, it is also faster to perform,” says colleague Scott Morrison.

“Having this sort of test available makes cheating harder and lets us take one more step towards enabling free and fair competition,” says Laboratory Director Dr Matthew Slawson.

This paper is part of a special issue for the Olympic Games from the Journal of Mass Spectrometry which focuses of drug use in sport. The issue is available free of charge online for one month at http://www.interscience.wiley.com/journal/jms. The other articles publishing in this issue are:

 

  • History of Mass Spectrometry at Olympic Games (DOI: 10.1002/jms.1445)
  • Nutritional supplements cross-contaminated and faked with doping substances (DOI: 10.1002/jms.1452)
  • Hair analysis of anabolic steroids in connection with doping control results from horse samples (DOI: 10.1002/jms.1446)
  • Mass spectrometric determination of Gonadotrophin releasing hormone (GnRH) in human urine for doping control purposes by means of LC-ESI-MS/MS (DOI: 10.1002/jms.1438)
  • Liquid chromatographic-mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: method validation and inter-laboratory comparison (DOI: 10.1002/jms.1434)
  • Mass Spectrometry of Selective Androgen Receptor Modulators (DOI: 10.1002/jms.1438)
  • Can glycans unveil the origin of glycoprotein hormones? – human chorionic gonadotropin as an example (DOI: 10.1002/jms.1448)
  • A High-Throughput Multicomponent Screening Method for Diuretics, Masking Agents, Central Nervous System Stimulants and Opiates in Human Urine by UPLC-MS/MS (DOI: 10.1002/jms.1436)
  • The application of carbon isotope ratio mass spectrometry to doping control (DOI: 10.1002/jms.1437)
  • Identification of zinc-alpha-2-glycoprotein binding to clone ae7a5 anti-human epo antibody by means of nano-hplc and high-resolution highmass accuracy esi-ms/ms (DOI: 10.1002/jms.1444)
  • Low LC-MS/MS Detection of Glycopeptides Released from pmol Levels of Recombinant Erythropoietin using Nanoflow HPLC-Chip Electrospray Ionization (DOI: 10.1002/jms.1439)
  • Introduction of HPLC/Orbitrap mass spectrometry as screening method for doping control (DOI: 10.1002/jms.1447)

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jennifer Beal
Wiley-Blackwell

University Park, Pa. — Girls and boys are now equally caught up in the social pressure for a muscular body image currently lauded in popular culture. A Penn State researcher contends those pressures are leading girls and boys down unhealthy avenues such as the misuse of anabolic steroids.

“Young girls have always had to struggle against the media stereotypes of stick-thin models or voluptuous sexuality, but with the rising popularity of women sports, girls are bombarded with buffed body images,” says Dr. Charles Yesalis, professor of health policy and administration, and exercise and sports science at Penn State, and editor of the newest edition of the book “Anabolic Steroids in Sports and Exercise.” “Now, young boys face pop culture musclemen like The Rock and Steve Austin, given the influence of professional wrestling shows.”

“The current film ‘Charlie’s Angels’ sports karate-kicking women in cool clothes,” he added. “Today’s children look with envy at the physiques of actors Arnold Schwarzenegger, Jean-Claude Van Damme, Wesley Snipes, and Linda Hamilton, whose roles call for a muscular build. Hollywood stars are openly taking Human Growth Hormone (HGH) injections to combat aging.”

In addition, children are entering competitive sports at younger ages and many working families have children signed up in two or three sports. Parents, coaches and young athletes are facing growing violence in amateur athletics. The pressure to win at all costs continues to weigh heavily on children, Yesalis notes.

The concern is that many youths will take shortcuts to achieving a muscular build by using anabolic steroids. Female athletes also are pressured to achieve low body fat to excel in their sport. The Penn State researcher has seen evidence that the pressures are reaching down to young children. For example, the book cites figures from the Monitoring The Future Study, a national-level epidemiological survey conducted annually since 1975. Approximately 50,000 8th, 10th and 12 graders are surveyed each year.

The MTF data shows that during the 1990s, anabolic steroid use among 12 graders –both boys and girls – rose to an all-time high with more than 500,000 adolescents having cycled – an episode of use of 6 to 12 weeks – during their lifetime. And the percentage of girls alone doubled in the same period.

A 1998 study of 965 youngsters at four Massachusetts middle schools found that 2.7 percent admitted to taking illegal steroids for better sports performance. That included some boys and girls as young as 10 years old. “This year’s Olympic doping scandals and the epidemic of anabolic steroids in professional baseball just glorify and justify steroids to impressionable youths,” Yesalis notes. “The use of anabolic steroids has cascaded down from the Olympic, professional and college levels to high schools and junior high schools and now middle schools for athletes and non-athletes alike. ”

“Anabolic steroids are made to order for a female wanting to attain a lean athletic body. While most drug abuse has outcomes that tend to discourage use, females who use anabolic steroids may experience a decrease in body fat, increased muscle size and strength, and enhanced sports performance,” he says.

Girls and boys misusing anabolic steroids may win approval and rewards from parents, coaches and peers, but don’t realize there are long-term negative effects on their health, particularly girls, according to Yesalis. Young girls face potential permanent side effects of male hair growth or baldness, deepening of the voice, the enlargement of the clitoris as well as the known risks of heart and liver diseases.

Published by Human Kinetics, the book incorporates the latest research, experience and insights of 15 experts on the scientific, clinical, historical, legal and other aspects of steroid abuse and drug testing. New information looks at the effects of steroids on health, particularly that of women.

This year, trials of East German doctors, coaches and officials reveal records of systematic doping of young athletes without their own or parents’ knowledge. In 1974, officials’ plan to turn the tiny Communist nation into a superpower in sports included giving performance-enhancing drugs to all competing athletes including children as young as 10 years old. The indictments included 142 former East German athletes who now complain of health problems. In media reports, several female athletes report incidents of miscarriages, liver tumor, gynecological problems and enlarged heart, all showing up decades after the steroid misuse.

“Our society’s current strategy for dealing with the abuse of anabolic steroids in sport primarily involves testing, law enforcement and education,” Yesalis says. “But our efforts to deal with this problem have not been very successful. Unless we deal with the social environment that rewards winning at all costs and an unrealistic physical appearance, we won’t even begin to address the problem.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Vicki Fong
Penn State