Posts Tagged ‘Protein’

Cereal and non-fat milk is as good as a commercially-available sports drink in initiating post-exercise muscle recovery.

Background

This study compared the effects of ingesting cereal and nonfat milk (Cereal) and a carbohydrate-electrolyte sports drink (Drink) immediately following endurance exercise on muscle glycogen synthesis and the phosphorylation state of proteins controlling protein synthesis: Akt, mTOR, rpS6 and eIF4E.

Methods

Trained cyclists or triathletes (8 male: 28.0+/-1.6 yrs, 1.8+/-0.0 m, 75.4+/-3.2 kg, 61.0+/-1.6 ml O2 * kg-1 * min-1; 4 female: 25.3+/-1.7 yrs, 1.7+/-0.0 m, 66.9+/-4.6 kg, 46.4+/-1.2 mlO2 * kg-1 * min-1) completed two randomly-ordered trials serving as their own controls. After 2 hours of cycling at 60-65% VO2MAX, a biopsy from the vastus lateralis was obtained (Post0), then subjects consumed either Drink (78.5 g carbohydrate) or Cereal (77 g carbohydrate, 19.5 g protein and 2.7 g fat). Blood was drawn before and at the end of exercise, and at 15, 30 and 60 minutes after treatment. A second biopsy was taken 60 minutes after supplementation (Post60). Differences within and between treatments were tested using repeated measures ANOVA.

Results

At Post60, blood glucose was similar between treatments (Drink 6.1+/-0.3, Cereal 5.6+/-0.2 mmol/L, p<.05), but after Cereal, plasma insulin was significantly higher (Drink 123.1+/-11.8, Cereal 191.0+/-12.3 pmol/L, p<.05), and plasma lactate significantly lower (Drink 1.4+/-0.1, Cereal 1.00+/-0.1 mmol/L, p<.05). Except for higher phosphorylation of mTOR after Cereal, glycogen and muscle proteins were not statistically different between treatments. Significant Post0 to Post60 changes occurred in glycogen (Drink 52.4+/-7.0 to 58.6+/-6.9, Cereal 58.7+/-9.6 to 66.0+/-10.0 mumol/g, p<.05) and rpS6 (Drink 17.9+/-2.5 to 35.2+/-4.9, Cereal 18.6+/-2.2 to 35.4+/-4.4 %Std, p<.05) for each treatment, but only Cereal significantly affected glycogen synthase (Drink 66.6+/-6.9 to 64.9+/-6.9, Cereal 61.1+/-8.0 to 54.2+/-7.2%Std, p<.05), Akt (Drink 57.9+/-3.2 to 55.7+/-3.1, Cereal 53.2+/-4.1 to 60.5+/-3.7 %Std, p<.05) and mTOR (Drink 28.7+/-4.4 to 35.4+/-4.5, Cereal 23.0+/-3.1 to 42.2+/-2.5 %Std, p<.05). eIF4E was unchanged after both treatments.

Conclusion

These results suggest that Cereal is as good as a commercially-available sports drink in initiating post-exercise muscle recovery.

Author: Lynne Kammer, Zhenping Ding, Bei Wang, Daiske Hara, Yi-Hung Liao and John L. Ivy

Credits/Source: Journal of the International Society of Sports Nutrition 2009, 6:11

Advertisements
             Products Related

NitroMax – Nutrient Dense High Proten Energy Shake Formula

Quantity Price Savings
3.9 lb $42.95 $17.00
clear
10 lb $90.00 $23.90
clear
25 lb $159.70 $61.70
 

 

 
Research News

 In many HIV-infected individuals with prior weight loss, the failure to regain weight and lean tissue is at least in part the consequence of inadequate protein intake or ingestion of a poor-quality protein rather than total caloric intake. Dietary sources of protein are presumably inadequate to meet the high metabolic needs caused by HIV infection. To achieve a target protein intake in the range (1.5 to 2.0 g/kg/day) demonstrated in other catabolic diseases necessary to achieve positive nitrogen balance and to generate substantial anabolic effects.

A high-quality protein food supplement may help HIV-positive patients maintain, and possibly gain, muscle mass. Many HIV-positive patients lose weight that they are then unable to regain. This may be because patients are not eating enough protein or are not eating the right kinds of protein. The protein eaten in foods (such as meat, eggs, or beans) may not be able to make up for the amount of protein lost due to HIV infection.

Investigators in The Research Institute at Nationwide Children’s Hospital have identified the role of a protein that could potentially lead to new clinical treatments to combat musculoskeletal diseases, including Duchenne muscular dystrophy (DMD).

Results of these studies appear in the March 11, 2008 issue of the Proceedings of the National Academy of Sciences.

These studies, led by Brian Kaspar, PhD, a principal investigator in the Center for Gene Therapy at The Research Institute and an assistant professor of Pediatrics at The Ohio State University, focus on a protein called follistatin (FS). Using a single injection, gene-delivery strategy involving FS, investigators treated the hind leg muscles of mice. Results showed increased muscle size and strength, quadruple that of mice treated with proteins other than FS. The muscle enhancements were shown to be well-tolerated for more than two years.

According to Dr. Kaspar, increased muscle mass and strength were also evident when this strategy was tested using a model of DMD. Apart from the injected hind leg muscles, strengthening effects were also shown in the triceps. In addition, fibrosis, abnormal formation of scar tissue and a hallmark of muscular dystrophy, was decreased in FS-treated animals.

“We believe this new FS strategy may be more powerful than other strategies due to its additional effects, including its ability to reduce inflammation,” said Dr. Kaspar.

The strategy showed no negative effects on the heart or reproductive ability of either males or females. The results were also replicated in older animals, suggesting that this strategy could be useful in developing clinical treatments for older DMD patients.

“This research provides evidence of multiple potential treatment applications for muscle diseases including, but not limited to, muscular dystrophy,” said Jerry Mendell, MD, director of the Center for Gene Therapy at The Research Institute, a co-author on the study, and professor of Pediatrics in Neurology and Pathology at The Ohio State University. “These results offer promise for treatment of potentially any muscle-wasting disease, including muscle weakness due to other illnesses, aging, and inflammatory diseases such as polymyositis. Our next step is to pursue clinical trials.”

The Research Institute at Nationwide Children’s Hospital has a patent pending on the FS technique due to the major role it may play for muscular dystrophy treatment and other muscle-wasting diseases.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Pam Barber/Mary Ellen Fiorino
Nationwide Children’s Hospital