Archive for the ‘Track’ Category

Researchers at The University of Auckland have shown for the first time that the mere presence of carbohydrate solution in the mouth immediately boosts muscle strength, even before it is swallowed.

The results suggest that a previously unknown neural pathway is activated when receptors in the mouth detect carbohydrate, stimulating parts of the brain that control muscle activity and producing an increase in muscle strength.

Previous research had shown that the presence of carbohydrate in the mouth can improve physical performance during prolonged activity, but the mechanism involved was not known and it was unclear whether a person must be fatigued for the effect to be seen.

“There appears to be a pathway in the brain that tells our muscles when energy is on the way,” says lead researcher Dr Nicholas Gant from the Department of Sport and Exercise Science.

“We have shown that carbohydrate in the mouth produces an immediate increase in neural drive to both fresh and fatigued muscle and that the size of the effect is unrelated to the amount of glucose in the blood or the extent of fatigue.”

The current research has been published in the journal Brain Research and has also captured the attention of New Scientist magazine.

In the first of two experiments, 16 healthy young men who had been doing biceps exercises for 11 minutes were given a carbohydrate solution to drink or an identically flavored energy-free placebo. Their biceps strength was measured before and immediately afterward, as was the activity of the brain pathway known to supply the biceps.

Around one second after swallowing the drink, neural activity increased by 30 percent and muscle strength two percent, with the effect lasting for around three minutes. The response was not related to the amount of glucose in the bloodstream or how fatigued the participants were.

“It might not sound like much, but a two percent increase in muscle strength is enormous, especially at the elite level. It’s the difference between winning an Olympic medal or not,” says co-author Dr Cathy Stinear.

As might be expected, a second boost in muscle strength was observed after 10 minutes when carbohydrate reached the bloodstream and muscles through digestion, but no additional boost in neural activity was seen at that time.

“Two quite distinct mechanisms are involved,” says Dr Stinear. “The first is the signal from the mouth via the brain that energy is about to be available and the second is when the carbohydrate actually reaches the muscles and provides that energy,” says Dr Stinear.

“The carbohydrate and placebo solutions used in the experiment were of identical flavor and sweetness, confirming that receptors in the mouth can process other sensory information aside from the basic taste qualities of food. The results suggest that detecting energy may be a sixth taste sense in humans,” says Dr Gant.

In the second experiment, 17 participants who had not been doing exercise and were not fatigued simply held one of the solutions in their mouths without swallowing. Measurements of the muscle between the thumb and index finger were taken while the muscle was either relaxed or active.

A similar, though smaller effect was observed as in the first experiment, with a nine percent increase in neural activity produced by the carbohydrate solution compared with placebo. This showed that the response is seen in both large powerful muscles and in smaller muscles responsible for fine hand movements.

“Together the results show that carbohydrate in the mouth activates the neural pathway whether or not muscles are fatigued. We were surprised by this, because we had expected that the response would be part of the brain’s sophisticated system for monitoring energy levels during exercise,” says Dr Stinear.

“Seeing the same effect in fresh muscle suggests that it’s more of a simple reflex – part of our basic wiring – and it appears that very ancient parts of the brain such as the brainstem are involved. Reflexive movements in response to touch, vision and hearing are well known but this is the first time that a reflex linking taste and muscle activity has been described,” she says.

Further research is required to determine the precise mechanisms involved and to learn more about the size of the effect on fresh versus fatigued muscle.

———————————–

Article adapted by MD Sports from original press release.
———————————–
Contact: Pauline Curtis
The University of Auckland

WESTCHESTER, Ill. – Athletes who get an extra amount of sleep are more likely to improve their performance in a game, according to a research abstract presented at the 21st Annual Meeting of the Associated Professional Sleep Societies (APSS).

The study, authored by Cheri Mah of Stanford University, was conducted on six healthy students on the Stanford men’s basketball team, who maintained their typical sleep-wake patterns for a two-week baseline followed by an extended sleep period in which they obtained as much extra sleep as possible. To assess improvements in athletic performance, the students were judged based on their sprint time and shooting percentages.

Significant improvements in athletic performance were observed, including faster sprint time and increased free-throws. Athletes also reported increased energy and improved mood during practices and games, as well as a decreased level of fatigue.

“Although much research has established the detrimental effects of sleep deprivation on cognitive function, mood and performance, relatively little research has investigated the effects of extra sleep over multiple nights on these variables, and even less on the specific relationship between extra sleep and athletic performance. This study illuminated this latter relationship and showed that obtaining extra sleep was associated with improvements in indicators of athletic performance and mood among members of the men’s basketball team.”

The amount of sleep a person gets affects his or her physical health, emotional well-being, mental abilities, productivity and performance. Recent studies associate lack of sleep with serious health problems such as an increased risk of depression, obesity, cardiovascular disease and diabetes.
———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jim Arcuri
American Academy of Sleep Medicine 

Experts recommend that adults get between seven and eight hours of sleep each night to maintain good health and optimum performance.

Persons who think they might be suffering from a sleep disorder are encouraged to consult with their primary care physician, who will refer them to a sleep specialist.

The annual SLEEP meeting brings together an international body of 5,000 leading researchers and clinicians in the field of sleep medicine to present and discuss new findings and medical developments related to sleep and sleep disorders.

More than 1,000 research abstracts will be presented at the SLEEP meeting, a joint venture of the American Academy of Sleep Medicine and the Sleep Research Society. The four-day scientific meeting will bring to light new findings that enhance the understanding of the processes of sleep and aid the diagnosis and treatment of sleep disorders such as insomnia, narcolepsy and sleep apnea.

Baseball team owners, players and fans seem to agree on the importance of drug testing for steroids, according to current reports, but the entire scope of performance-enhancing substances available for all athletes is vastly broader and many of the drugs employed by athletes are not easily detectable, says a Penn State researcher.”The use, misuse and abuse of drugs have long shaken the foundations of amateur and professional sports–baseball, football, track and field, gymnastics and cycling, to name just a few,” says Dr. Charles Yesalis, Penn State professor of exercise and sport science and health policy and administration. “The problem is not new. But like the rest of technology, doping in sport has grown in scientific and ethical complexity. In addition to drugs, we have natural hormones, blood doping, diuretics, nutritional supplements, social and recreational drugs, stimulants and miscellaneous substances, some of which may not even be on any list of banned substances.”

While drug testing technology struggles to keep up, an array of new and emerging technologies has arrived or is on the horizon with potential for abuse by athletes including gene transfer therapy, stem cell transplantation, muscle fiber phenotype transformation, red blood cell substitutes and new drug delivery systems, says Yesalis

“It is not too hard to imagine the day when muscles can be selectively enlarged or contoured,” according to the book. “Just imagine the consequences of a kinesiologist isolating specific muscles and selectively injecting designer genes into those muscles to maximize their function.”

The new book brings together the latest and most comprehensive scientific information about performance-enhancing substances, as well as discussion of drug testing, legal and social issues, and future directions by sports governing organizations.

“Sport has a responsibility to maintain a level playing field for the trial of skill,” Yesalis says. “The use of chemical and pharmacologist agents is cheating – just like using a corked baseball bat. But unlike the bat, doping is shrouded in mystery. Athletes and their advisors are constantly seeking ‘gray areas” surrounding the rules, and if something is not explicitly banned, then why not try it. This slippery slope of rationalization is treacherous and appealing to a player or team seeking glory and money rewards.”

In one chapter, “Drug Testing and Sport and Exercise,” author R. Craig Kammerer suggests that improvement in current tests and developments in new methods will assist future policymaking by athletic federations. However, effective testing must become more widespread and include unannounced testing outside of competition. Sanctions against athletes must be more fairly and uniformly applied, with thorough investigation to avoid false positive results and ruin an athlete’s career.

The difficulty of detecting and preventing the abuse of performance enhancing substances by adult athletes may seem futile but remains necessary as part of the effort to discourage abuse by youths who emulate professional athletes and also seek a winning advantage, Yesalis notes.

A recent government study of adolescent drug use shows an alarming increase in anabolic steroid use among middle school youths from 1998-1999 with an estimated 2.7 percent of eighth graders saying they have used the drugs. A larger survey by Blue Cross and Blue Shield estimates that one million U.S. children between the ages of 12 and 17 may have taken performance-enhancing substances including creatine, according to the book.

“Children and teens can seriously harm their future health by misusing these substances,” Yesalis says. “For example, steroids alone can cause scarring acne, hair loss and testicular atrophy, and may increase the risk of stroke and heart disease. It is just as important to note that little is known about the health consequences of many of the other substances used to enhance performance. Yet some coaches and parents look the other way and even actively encourage the use of performance-enhancing substances in pursuit of scholarships and winning.

“There is too much fame and fortune to be gained by being a winner in sports,” he notes. “It’s interesting to see that baseball fans being polled support drug testing and a ban on steroids, but it will take fans of all major sports to take a stand by turning off their TV sets or not buying a ticket to sports events before adult athletes, coaches and team owners stop trying to cheat. And, that’s probably not going to happen.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Vicki Fong
Penn State

Genetic research into athletic ability should be encouraged for its potential benefits in both sport and public health, a leading group of scientists meeting at the University of Bath said today. Genetic research into athletic ability should be encouraged for its potential benefits in both sport and public health, a leading group of scientists meeting at the University of Bath said today.

However, ethical concerns, such as whether seeking information about differences between ethnic groups could be perceived as racist research, need to be properly addressed, they warn.

Their recommendations are published in a ‘position stand’ on genetic research and testing launched at the British Association of Sport & Exercise Sciences annual meeting today.

They call for more genetic research in the sport and exercise sciences because of the anticipated benefits for public health, but want researchers to take a more active role in debating the implications of their work with the public.

“If a powerful muscle growth gene was identified, on the one hand this could help develop training programmes that increase muscle size and strength in athletes, but even more importantly the knowledge could be used to develop exercise programmes or drugs to combat muscle wasting in old age,” said Dr Alun Williams from Manchester Metropolitan University, one of the report’s authors.

“We, as scientists investigating genetics, acknowledge a public concern about some genetic research and we believe scientists need to engage in public in debates about the potential benefits of their research.

“Research into the athletic success of East African distance runners or sprinters of West African ancestry might be perceived as unethical.

“But understanding the limits of human exercise capacity in sport could lead to the development of treatments for a range of diseases like cancer and cardiovascular disease.”

The potential applications of genetic testing in sport and exercise also raise some ethical concerns, for example in identifying potential athletic ability before birth.

An Australian company already offers the first genetic performance test (for the ACTN3 gene) which has been linked to sprint and power performance.

The report authors are sceptical about whether this test is useful but anticipate that more advanced versions of these tests will be available in future.

“We are not yet at a point where we can identify a potential future Olympic champion from genetic tests but we may not be very far away,” said Dr Williams, who wrote the report with Drs Henning Wackerhage (Aberdeen University), Andy Miah (University of Paisley), Roger Harris (University of Chichester) and Hugh Montgomery (University College London).

They highlight two dangers of genetic performance tests. Firstly, genetic performance tests might later be linked to disease. For example, a muscle growth gene may later be linked to cancer growth.

“Not all people may want to know, while young that they are at increased risk of cancer by early middle age, but they might inadvertently become aware of that just because they had a ‘sport gene’ test,” said Dr Williams.

Secondly, genetic performance tests can be performed even before birth and this may lead to the selection of foetuses or to abortions based on athletic potential.

The report recommends genetic counselling and that the testing should be confined to mature individuals who fully understand the relevant issues.

Genetic tests might also be used to screen for health risks during sport such as genes that are linked to sudden cardiac death.

Genetic tests for sudden cardiac death are already available but the report recommends that such testing should not be enforced on athletes.

Problems with mandatory testing are highlighted by the case of the basketball player Eddy Curry, who had an irregular heart beat.

Curry was asked by his club, the Chicago Bulls, to perform a predictive genetic test for a heart condition. The athlete refused and was traded to the New York Knicks who did not make such a demand.

In future, genetic tests might be used to identify those that respond with the biggest drop in cholesterol, blood pressure or glucose to exercise.

In a personalised medicine approach, such tests could be used to select subjects for therapeutic exercise programmes but scientists are concerned that this might undermine the ‘exercise for all’ message that already seems difficult to get across to the public.

The authors say that genetic testing might also be used to detect gene doping, which may be a real threat by the time of the London Olympics in 2012, or to show that positive doping tests are the result of a genetic mutation in an athlete.

The report recommends that genetic testing should be used for anti-doping testing as long as the genetic samples are destroyed after testing.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Andrew McLaughlin
University of Bath

Whippets are bred for speed and have been clocked at speeds approaching 40 miles per hour over a 200-yard racing course. Scientists at the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health (NIH), have now discovered a genetic mutation that helps to explain why some whippets run even faster than others. Published in the open-access journal PLoS Genetics, their findings will make for a fascinating experiment in applied genetics and human nature: what will dog breeders do with this information, and what are the implications for human athletic performance?

A research team led by Elaine Ostrander, chief of the Cancer Genetics Branch in NHGRI’s Division of Intramural Research, reports that a mutation in a gene that codes for a muscle protein known as myostatin can increase muscle mass and enhance racing performance in whippets. Like humans, dogs have two copies of every gene, one inherited from their mother and the other from their father. Dr. Ostrander and colleagues found those whippets with one mutated copy of the myostatin (MTSN) gene and one normal copy to be more muscled than normal and are among the breed’s fastest racers. However, their research also showed that whippets with two mutated copies of the MTSN gene have a gross excess of muscle and are rarely found among competitive racers.

This is the first work to link athletic performance to a mutation in the myostatin gene, with Dr. Ostrander observing: “The potential to increase an athlete’s performance by disrupting MSTN either by natural or perhaps artificial means could change the face of competitive human and canine athletics.” However, the authors stress that: “Extreme caution should be exercised when acting upon these results because we do not know the consequences for overall health associated with myostatin mutations.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Johanna Dehlinger
Public Library of Science

CITATION: Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, et al. (2007) A Mutation in the Myostatin Gene Increases Muscle Mass and Enhances Racing Performance in Heterozygote Dogs. PLoS Genet. doi:10.1371/journal.pgen.0030079.eor
 

Trained runners who severely limit the amount of fat in their diets may be suppressing their immune system and increasing their susceptibility to infections and inflammation, a University at Buffalo study has shown.In findings presented here today (May 22, 1999) at the fourth International Society for Exercise and Immunology Symposium, lead author Jaya T. Venkatraman, Ph.D., reported that running 40 miles per week on a diet composed of approximately 17 percent fat compromised the runners’ immune response.

The medium and high-fat diets, composed of approximately 32 and 41 percent fat respectively, left the immune system intact, and enhanced certain components, the findings showed.

“The data suggest that higher-fat diets may lower the proinflammatory cytokines, free radicals and hormones, and may enhance the levels of anti-inflammatory cytokines,” Venkatraman said.

Venkatraman is an associate professor of nutrition in the Department of Physical Therapy, Exercise and Nutrition Sciences in the UB School of Health Related Professions.

Earlier studies published by a UB research group headed by David Pendergast, Ed.D., professor of physiology and biophysics, reported that competitive runners who increased the proportion of fat in their diets improved their endurance with no negative effect on weight, body composition, blood pressure, pulse rate or total cholesterol. (See editor’s note)

However, since a high level of fat was thought to be immunosuppressive, the researchers sought to determine if increasing dietary fat would compromise various elements of the immune system, while improving performance.

“In general, moderate levels of exercise are known to enhance the immune system,” said Venkatraman. “But high-intensity exercise and endurance exercise produce excess levels of free radicals, which may place stress on the immune system.

“Since we have shown that athletes perform better on a higher-fat diet than on a low-fat diet, it was important to determine if the higher-fat diet would further compromise the immune system,” she said. “We found that it did not, but the very-low-fat diet did.”

The study involved six female and eight male competitive runners who trained at 40 miles a week and were part of a larger performance study. They spent a month on their normal diets, followed by a month each on diets composed of approximately 17 percent, 32 percent and 41 percent fat. Protein remained stable at 15 percent and carbohydrates made up the difference.

The immune status of the runners was obtained by analyzing concentrations of essential components of the immune system — leukocytes, cytokines and plasma cortisol — in blood samples taken before and after an endurance exercise test. The tests were conducted at the end of each four-week diet period.

Results showed that natural killer cells, a type of leukocyte and one of the body’s defense mechanisms marshaled to fight infection, were more than doubled in runners after the high-fat diet, compared to the low-fat regimen. Levels of PGE2, inflammation-causing prostaglandins, increased after the endurance test and were higher when the runners were on the low-fat diet.

This study is part of a larger investigation to determine the effects of dietary fat on performance, biochemical and nutritional status, and plasma lipids and lipoprotein profiles in distance runners being conducted by a study group composed of — in addition to Venkatraman and Pendergast — Peter Horvath, Ph.D., associate professor in the UB Department of Physical Therapy, Exercise and Nutrition Sciences, and John Leddy, M.D., clinical professor of orthopaedics and associate director of the UB Sports Medicine Institute.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Lois Baker
University at Buffalo

A study published in Angiology shows that supplementation with the pine bark extract Pycnogenol® (pic-noj-en-all) improves blood flow to the muscles which speeds recovery after physical exercise. The study of 113 participants demonstrated that Pycnogenol significantly reduces muscular pain and cramps in athletes and healthy, normal individuals.

“With the millions of athletes worldwide, this truly is a profound breakthrough and extremely significant for all individuals interested in muscle cramp and pain relief with a natural approach. These findings indicate that Pycnogenol can play an important role in sports by improving blood flow to the muscles and hastening post-exercise recovery, said Dr. Peter Rohdewald, a lead researcher of the study.

Researchers at L’Aquila University in Italy and at the University of Würzburg in Germany studied the effects of Pycnogenol® on venous disorders and cramping in two separate studies.

The first study consisted of 66 participants who had experienced normal cramping at some point, had venous insufficiency, or were athletes who suffer from exercise-induced cramping. The first two weeks of the study was an observation period and participants did not supplement with Pycnogenol®. Symptoms related to venous disorders, and the number of cramping episodes each participant experienced over the two observation weeks was recorded.

Next, all the participants were given 200 mg of Pycnogenol once a day for four weeks. After the treatment phase, participants’ symptoms and cramping episodes were recorded for one week without any Pycnogenol supplementation.

The researchers found a significant decrease in the number of cramps the participants experienced while supplementing with Pycnogenol.® Participants who had experienced normal cramping had a 25 percent reduction in the number of cramps experienced while taking Pycnogenol.

Participants with venous insufficiency experienced a 40 percent reduction in the number of cramps, and athletes with frequent cramping experienced a 13 percent reduction in the number of cramps while on Pycnogenol.®

The second study involved 47 participants with diabetic microangiopathy (a disorder of the smallest veins commonly associated with diabetes), or intermittent claudication (a blood vessel disease that causes the legs to easily cramp).This study also used a two-week pre-trial observation period followed by a week of supplementing with Pycnogenol (200 mg per day for one week), followed by a week of observation without Pycnogenol® supplementation.

Patients with diabetic microangiopathy had a 20.8 percent reduction in pain, while participants with claudication experienced a 21 percent decrease in the amount of pain experienced while supplementing with Pycnogenol.® Results indicated participants who took placebo experienced no decrease in pain.

Cramps are a common problem for people of all ages, ranging to the extreme fit and healthy to people who suffer from health problems. Previously, magnesium was hailed as the natural approach for relieving muscle cramps, however studies continue to show magnesium to be inefficient for reducing muscle cramps.

“Pycnogenol® improves the blood supply to muscle tissue creating a relief effect on muscle cramping and pain. Poor circulation in the muscle is known to cause cramps and Pycnogenol® improved the cramping in patients due to a stimulation of blood flow to their muscle tissue. Nitric oxide (NO) a blood gas, is well known to enhance blood flow and Pycnogenol® may be influencing the activity of NO,” said Rohdewald. “The insufficient production of NO is the common denominator responsible for impaired blood flow in vascular disease.”

Strenuous exercise is known to involve muscle damage which may be followed by symptoms of inflammation. In separate studies published this year and in 2004 and 2005, Pycnogenol® demonstrated its anti-inflammatory effects in clinical trials for asthma, dysmenorrhea and osteoarthritis.

—————————-
Article adapted by MD Only Weblog from original press release.
—————————-  

Contact: Pycnogenol®

About Pycnogenol®
Pycnogenol® is a natural plant extract originating from the bark of the maritime pine that grows along the coast of southwest France and is found to contain a unique combination of procyanidins, bioflavonoids and organic acids, which offer extensive natural health benefits. The extract has been widely studied for the past 35 years and has more than 220 published studies and review articles ensuring safety and efficacy as an ingredient. Today, Pycnogenol® is available in more than 600 dietary supplements, multi-vitamins and health products worldwide.