Archive for the ‘jogging’ Category

Recipe to recover more quickly from exercise: Finish workout, eat pasta, and wash down with five or six cups of strong coffee.

Glycogen, the muscle’s primary fuel source during exercise, is replenished more rapidly when athletes ingest both carbohydrate and caffeine following exhaustive exercise, new research from the online edition of the Journal of Applied Physiology shows. Athletes who ingested caffeine with carbohydrate had 66% more glycogen in their muscles four hours after finishing intense, glycogen-depleting exercise, compared to when they consumed carbohydrate alone, according to the study, published by The American Physiological Society.

The study, “High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is co-ingested with caffeine,” is by David J. Pedersen, Sarah J. Lessard, Vernon G. Coffey, Emmanuel G. Churchley, Andrew M. Wootton, They Ng, Matthew J. Watt and John A. Hawley. Dr. Pedersen is with the Garvan Institute of Medical Research in Sydney, Australia, Dr. Watt is from St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia. All others are with the Royal Melbourne Institute of Technology University (RMIT) in Bundoora, Victoria, Australia.

A fuller audio interview with Dr. Hawley is available in Episode 11 of the APS podcast, Life Lines, at www.lifelines.tv. The show also includes an interview with Dr. Stanley Schultz, whose physiological discovery of how sugar is transported in the gut led to the development of oral rehydration therapy and sports drinks such as Gatorade and Hi-5.

Caffeine aids carbohydrate uptake  

It is already established that consuming carbohydrate and caffeine prior to and during exercise improves a variety of athletic performances. This is the first study to show that caffeine combined with carbohydrates following exercise can help refuel the muscle faster.

“If you have 66% more fuel for the next day’s training or competition, there is absolutely no question you will go farther or faster,” said Dr. Hawley, the study’s senior author. Caffeine is present in common foods and beverages, including coffee, tea, chocolate and cola drinks.

The study was conducted on seven well-trained endurance cyclists who participated in four sessions. The participants first rode a cycle ergometer until exhaustion, and then consumed a low-carbohydrate dinner before going home. This exercise bout was designed to reduce the athletes’ muscle glycogen stores prior to the experimental trial the next day.

The athletes did not eat again until they returned to the lab the next day for the second session when they again cycled until exhaustion. They then ingested a drink that contained carbohydrate alone or carbohydrate plus caffeine and rested in the laboratory for four hours. During this post-exercise rest time, the researchers took several muscle biopsies and multiple blood samples to measure the amount of glycogen being replenished in the muscle, along with the concentrations of glucose-regulating metabolites and hormones in the blood, including glucose and insulin.

The entire two-session process was repeated 7-10 days later. The only difference was that this time, the athletes drank the beverage that they had not consumed in the previous trial. (That is, if they drank the carbohydrate alone in the first trial, they drank the carbohydrate plus caffeine in the second trial, and vice versa.)

The drinks looked, smelled and tasted the same and both contained the same amount of carbohydrate. Neither the researchers nor the cyclists knew which regimen they were receiving, making it a double-blind, placebo-controlled experiment.

Glucose and insulin levels higher with caffeine ingestion
The researchers found the following:  
  • one hour after exercise, muscle glycogen levels had replenished to the same extent whether or not the athlete had the drink containing carbohydrate and caffeine or carbohydrate only
  • four hours after exercise, the drink containing caffeine resulted in 66% higher glycogen levels compared to the carbohydrate-only drink
  • throughout the four-hour recovery period, the caffeinated drink resulted in higher levels of blood glucose and plasma insulin
  • several signaling proteins believed to play a role in glucose transport into the muscle were elevated to a greater extent after the athletes ingested the carbohydrate-plus-caffeine drink, compared to the carbohydrate-only drink

 Dr. Hawley said it is not yet clear how caffeine aids in facilitating glucose uptake from the blood into the muscles. However, the higher circulating blood glucose and plasma insulin levels were likely to be a factor. In addition, caffeine may increase the activity of several signaling enzymes, including the calcium-dependent protein kinase and protein kinase B (also called Akt), which have roles in muscle glucose uptake during and after exercise.

Lower dose is next step  

In this study, the researchers used a high dose of caffeine to establish that it could help the muscles convert ingested carbohydrates to glycogen more rapidly. However, because caffeine can have potentially negative effects, such as disturbing sleep or causing jitteriness, the next step is to determine whether smaller doses could accomplish the same goal.

Hawley pointed out that the responses to caffeine ingestion vary widely between individuals. Indeed, while several of the athletes in the study said they had a difficult time sleeping the night after the trial in which they ingested caffeine (8 mg per kilogram of body weight, the equivalent of drinking 5-6 cups of strong coffee), several others fell asleep during the recovery period and reported no adverse effects.

Athletes who want to incorporate caffeine into their workouts should experiment during training sessions well in advance of an important competition to find out what works for them.

 —————————-
Article adapted by MD Sports from original press release.
—————————-

Contact: Christine Guilfoy
American Physiological Society

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS) has been an integral part of this scientific discovery process since it was established in 1887.

Advertisements

A University of Colorado at Boulder study of a space-age, low-gravity training machine used by several 2008 Olympic runners showed it reduced impacts on muscles and joints by nearly half when subjects ran at the equivalent of 50 percent of their body weight.

The new study has implications for both competitive runners rehabilitating from injuries and for ordinary people returning from knee and hip surgeries, according to Associate Professor Rodger Kram of CU-Boulder’s integrative physiology department.

Known as the “G-Trainer,” the machine consists of a treadmill surrounded by an inflatable plastic chamber that encases the lower body of the runner, said Kram. Air pumped into the chamber increases the pressure and effectively reduces the weight of runners, who are sealed in the machine at the waist in a donut-shaped device with a special zipper and “literally lifted up by their padded neoprene shorts,” he said.

Published in the August issue of the Journal of Applied Biomechanics, the study is the first to quantify the effects of running in the G-Trainer, built by Alter-G Inc. of Menlo Park, Calif., using technology developed at NASA’s Ames Research Center in California. The paper was authored by Kram and former CU-Boulder doctoral student Alena Grabowski, now a postdoctoral researcher at the Massachusetts Institute of Technology.

Although G-Trainers have been used in some sports clinics and college and professional sports training rooms since 2006, the new study is the first scientific analysis of the device as a training tool for running, said Grabowski.

“The idea was to measure which levels of weight support and speeds give us the best combination of aerobic workout while reducing the impact on joints,” said Kram. “We showed that a person can run faster in the G-Trainer at a lower weight and still get substantial aerobic benefits while maintaining good neuromuscular coordination.”

The results indicated a subject running at the equivalent of half their weight in the G-Trainer at about 10 feet per second, for example — the equivalent of a seven-minute mile — decreased the “peak” force resulting from heel impact by 44 percent, said Grabowski. That is important, she said, because each foot impact at high speed can jar the body with a force equal to twice a runner’s weight.

Several former CU track athletes participating in the 2008 Olympics in Beijing have used the machine, said Kram. Alumna Kara Goucher, who will be running the 5,000- and 10,000-meter races in Beijing, has used the one in Kram’s CU-Boulder lab and one in Eugene, Ore., for rehabilitation, and former CU All-American and Olympic marathoner Dathan Ritzenhein also uses a G-Trainer in his home in Oregon. Other current CU track athletes who have been injured have tried the machine in Kram’s lab and found it helpful to maintain their fitness as they recovered, Kram said.

For the study, the researchers retrofitted the G-Trainer with a force-measuring treadmill invented by Kram’s team that charts vertical and horizontal stress load on each foot during locomotion, measuring the variation of biomechanical forces on the legs during running. Ten subjects each ran at three different speeds at various reduced weights, with each run lasting seven minutes. The researchers also measured oxygen consumption during each test, Kram said.

Grabowski likened the effect of the G-Trainer on a runner to pressurized air pushing on the cork of a bottle. “If you can decrease the intensity of these peak forces during running, then you probably will decrease the risk of injury to the runner.”

The G-Trainer is a spinoff of technology originally developed by Rob Whalen, who conceived the idea while working at NASA Ames as a National Research Council fellow to help astronauts maintain fitness during prolonged space flight. While the NASA technology was designed to effectively increase the weight of the astronauts to stem muscle atrophy and bone loss in low-gravity conditions, the G-Trainer reverses the process, said Grabowski.

In the past, sports trainers and researchers have used climbing harnesses over treadmills or flotation devices in deep-water swimming pools to help support the weight of subjects, said Kram. Harnesses are cumbersome, while pool exercises don’t provide sufficient aerobic stimulation and biomechanical loading on the legs, he said.

Marathon world-record holder Paula Radcliffe of Great Britain is currently using a G-Trainer in her high-altitude training base in Font-Remeu, France. Radcliffe is trying to stay in top running shape while recovering from a stress fracture in her femur in time for the 2008 Olympic women’s marathon on Aug. 17, according to the London Telegraph.

Kram and Grabowski have begun a follow-up study of walking using the G-Trainer. By studying subjects walking at various weights and speeds in the machine, the researchers should be able to quantify its effectiveness as a rehabilitation device for people recovering from surgeries, stress fractures and other lower body injuries, Kram said.

—————————-
Article adapted by MD Sports from original press release.
—————————-

Contact: Rodger Kram
University of Colorado at Boulder

Boosting an exercise-related gene in the brain works as a powerful anti-depressant in mice—a finding that could lead to a new anti-depressant drug target, according to a Yale School of Medicine report in Nature Medicine.

“The VGF exercise-related gene and target for drug development could be even better than chemical antidepressants because it is already present in the brain,” said Ronald Duman, professor of psychiatry and senior author of the study.

Depression affects 16 percent of the population in the United States, at a related cost of $83 billion each year. Currently available anti-depressants help 65 percent of patients and require weeks to months before the patients experience relief.

Duman said it is known that exercise improves brain function and mental health, and provides protective benefits in the event of a brain injury or disease, but how this all happens in the brain is not well understood. He said the fact that existing medications take so long to work indicates that some neuronal adaptation or plasticity is needed.

He and his colleagues designed a custom microarray that was optimized to show small changes in gene expression, particularly in the brain’s hippocampus, a limbic structure highly sensitive to stress hormones, depression, and anti-depressants.

They then compared the brain activity of sedentary mice to those who were given running wheels. The researchers observed that the mice with wheels within one week were running more than six miles each night. Four independent array analyses of the mice turned up 33 hippocampal exercise-regulated genes—27 of which had never been identified before.

The action of one gene in particular—VGF—was greatly enhanced by exercise. Moreover, administering VGF functioned like a powerful anti-depressant, while blocking VGF inhibited the effects of exercise and induced depressive-like behavior in the mice.

“Identification of VGF provides a mechanism by which exercise produces antidepressant effects,” Duman said. “This information further supports the benefits of exercise and provides a novel target for the development of new antidepressants with a completely different mechanism of action than existing medications.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Jacqueline Weaver
Yale University
Nature Medicine

A new pair of studies compare step counts needed to meet 1) ACSM/CDC recommendations for moderate physical activity and 2) a one-mile mark. Both studies are useful as suggested step-based guidelines for meeting physical activity recommendations.

The first study, funded by the Centers for Disease Control and Prevention, was designed to translate ACSM/CDC public health guidelines for 30 minutes of daily moderate-intensity physical activity into steps. Researchers at San Diego State University and Arizona State University utilized commercial pedometers on a community sample of adults. Their results support an approximate 100 step/minute recommendation for minimally moderate intensity. To meet ACSM/CDC recommendations, this equates to 3,000 steps in 30 minutes, or three daily bouts of 1,000 steps in 10 minutes.

While pedometers are useful tools to measure step counts, this team notes pedometer-derived steps should be used with caution for gauging moderate intensity walking. Step counts associated with moderate intensity walking should be individualized based on stride length and level of fitness. ACSM defines moderate intensity walking as “brisk” walking, or “walking with purpose.” Walkers should be able to talk comfortably at a moderate-intensity level, but still feel exertion. Other definitions have included a pace at which you break a sweat and/or have a slight increase in your heart rate.

“Walking is one of the easiest forms of physical activity, and one that most people can do to meet recommendations for daily exercise,” said Simon J. Marshall, Ph.D., lead author of the study. “Most people have an instinct about the length of time or the distance they walk. A pedometer can help count steps, but when you also try to walk at least 1000 steps in 10 minutes on a regular basis, you may gain significant health benefits. For inactive people, setting smaller targets can help them start a program to meet general physical activity guidelines and enhance their health and wellness.”

In the one-mile study, researchers at Boise State University wanted to determine the number of steps individuals take while walking one mile at 20 and 15-minute paces and while running the same distance at 12, 10, eight, and six-minute paces. One mile (1,609 meters) step count varies at different walking and running speeds and can be predicted based on gender, pace, and height or leg length.

The average number of steps required to run/walk a mile ranged from 1,064 steps for a six-minute-mile pace in men to 2,310 steps for a 20-minute per mile walk in women. An interesting finding is that on average, individuals took more steps while running (jogging) a 12-minute mile than while walking a 15-minute mile (1,951 vs.1,935 steps, respectively). This finding is most likely related to the smaller distance between steps that people tend to take while jogging at the slower speed (12-minute mile) compared to walking at a 15-minute per mile pace.

“A ‘mile’ appears to be universally known as a marker of distance for walkers and runners to measure their activity achievements,” said Werner Hoeger, Ed.D., FACSM, lead author. “To estimate the number of steps required to walk or run a mile at selected speeds is likely to help people who monitor their steps with a pedometer with the objective of increasing their fitness by working up the miles.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-
The American College of Sports Medicine is the largest sports medicine and exercise science organization in the world. More than 20,000 international, national, and regional members are dedicated to advancing and integrating scientific research to provide educational and practical applications of exercise science and sports medicine.

http://www.acsm.org