Archive for the ‘cycling’ Category

WESTCHESTER, Ill. – Athletes who get an extra amount of sleep are more likely to improve their performance in a game, according to a research abstract presented at the 21st Annual Meeting of the Associated Professional Sleep Societies (APSS).

The study, authored by Cheri Mah of Stanford University, was conducted on six healthy students on the Stanford men’s basketball team, who maintained their typical sleep-wake patterns for a two-week baseline followed by an extended sleep period in which they obtained as much extra sleep as possible. To assess improvements in athletic performance, the students were judged based on their sprint time and shooting percentages.

Significant improvements in athletic performance were observed, including faster sprint time and increased free-throws. Athletes also reported increased energy and improved mood during practices and games, as well as a decreased level of fatigue.

“Although much research has established the detrimental effects of sleep deprivation on cognitive function, mood and performance, relatively little research has investigated the effects of extra sleep over multiple nights on these variables, and even less on the specific relationship between extra sleep and athletic performance. This study illuminated this latter relationship and showed that obtaining extra sleep was associated with improvements in indicators of athletic performance and mood among members of the men’s basketball team.”

The amount of sleep a person gets affects his or her physical health, emotional well-being, mental abilities, productivity and performance. Recent studies associate lack of sleep with serious health problems such as an increased risk of depression, obesity, cardiovascular disease and diabetes.
———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jim Arcuri
American Academy of Sleep Medicine 

Experts recommend that adults get between seven and eight hours of sleep each night to maintain good health and optimum performance.

Persons who think they might be suffering from a sleep disorder are encouraged to consult with their primary care physician, who will refer them to a sleep specialist.

The annual SLEEP meeting brings together an international body of 5,000 leading researchers and clinicians in the field of sleep medicine to present and discuss new findings and medical developments related to sleep and sleep disorders.

More than 1,000 research abstracts will be presented at the SLEEP meeting, a joint venture of the American Academy of Sleep Medicine and the Sleep Research Society. The four-day scientific meeting will bring to light new findings that enhance the understanding of the processes of sleep and aid the diagnosis and treatment of sleep disorders such as insomnia, narcolepsy and sleep apnea.

Advertisements

University Park, Pa. — Girls and boys are now equally caught up in the social pressure for a muscular body image currently lauded in popular culture. A Penn State researcher contends those pressures are leading girls and boys down unhealthy avenues such as the misuse of anabolic steroids.

“Young girls have always had to struggle against the media stereotypes of stick-thin models or voluptuous sexuality, but with the rising popularity of women sports, girls are bombarded with buffed body images,” says Dr. Charles Yesalis, professor of health policy and administration, and exercise and sports science at Penn State, and editor of the newest edition of the book “Anabolic Steroids in Sports and Exercise.” “Now, young boys face pop culture musclemen like The Rock and Steve Austin, given the influence of professional wrestling shows.”

“The current film ‘Charlie’s Angels’ sports karate-kicking women in cool clothes,” he added. “Today’s children look with envy at the physiques of actors Arnold Schwarzenegger, Jean-Claude Van Damme, Wesley Snipes, and Linda Hamilton, whose roles call for a muscular build. Hollywood stars are openly taking Human Growth Hormone (HGH) injections to combat aging.”

In addition, children are entering competitive sports at younger ages and many working families have children signed up in two or three sports. Parents, coaches and young athletes are facing growing violence in amateur athletics. The pressure to win at all costs continues to weigh heavily on children, Yesalis notes.

The concern is that many youths will take shortcuts to achieving a muscular build by using anabolic steroids. Female athletes also are pressured to achieve low body fat to excel in their sport. The Penn State researcher has seen evidence that the pressures are reaching down to young children. For example, the book cites figures from the Monitoring The Future Study, a national-level epidemiological survey conducted annually since 1975. Approximately 50,000 8th, 10th and 12 graders are surveyed each year.

The MTF data shows that during the 1990s, anabolic steroid use among 12 graders –both boys and girls – rose to an all-time high with more than 500,000 adolescents having cycled – an episode of use of 6 to 12 weeks – during their lifetime. And the percentage of girls alone doubled in the same period.

A 1998 study of 965 youngsters at four Massachusetts middle schools found that 2.7 percent admitted to taking illegal steroids for better sports performance. That included some boys and girls as young as 10 years old. “This year’s Olympic doping scandals and the epidemic of anabolic steroids in professional baseball just glorify and justify steroids to impressionable youths,” Yesalis notes. “The use of anabolic steroids has cascaded down from the Olympic, professional and college levels to high schools and junior high schools and now middle schools for athletes and non-athletes alike. ”

“Anabolic steroids are made to order for a female wanting to attain a lean athletic body. While most drug abuse has outcomes that tend to discourage use, females who use anabolic steroids may experience a decrease in body fat, increased muscle size and strength, and enhanced sports performance,” he says.

Girls and boys misusing anabolic steroids may win approval and rewards from parents, coaches and peers, but don’t realize there are long-term negative effects on their health, particularly girls, according to Yesalis. Young girls face potential permanent side effects of male hair growth or baldness, deepening of the voice, the enlargement of the clitoris as well as the known risks of heart and liver diseases.

Published by Human Kinetics, the book incorporates the latest research, experience and insights of 15 experts on the scientific, clinical, historical, legal and other aspects of steroid abuse and drug testing. New information looks at the effects of steroids on health, particularly that of women.

This year, trials of East German doctors, coaches and officials reveal records of systematic doping of young athletes without their own or parents’ knowledge. In 1974, officials’ plan to turn the tiny Communist nation into a superpower in sports included giving performance-enhancing drugs to all competing athletes including children as young as 10 years old. The indictments included 142 former East German athletes who now complain of health problems. In media reports, several female athletes report incidents of miscarriages, liver tumor, gynecological problems and enlarged heart, all showing up decades after the steroid misuse.

“Our society’s current strategy for dealing with the abuse of anabolic steroids in sport primarily involves testing, law enforcement and education,” Yesalis says. “But our efforts to deal with this problem have not been very successful. Unless we deal with the social environment that rewards winning at all costs and an unrealistic physical appearance, we won’t even begin to address the problem.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Vicki Fong
Penn State

Recipe to recover more quickly from exercise: Finish workout, eat pasta, and wash down with five or six cups of strong coffee.

Glycogen, the muscle’s primary fuel source during exercise, is replenished more rapidly when athletes ingest both carbohydrate and caffeine following exhaustive exercise, new research from the online edition of the Journal of Applied Physiology shows. Athletes who ingested caffeine with carbohydrate had 66% more glycogen in their muscles four hours after finishing intense, glycogen-depleting exercise, compared to when they consumed carbohydrate alone, according to the study, published by The American Physiological Society.

The study, “High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is co-ingested with caffeine,” is by David J. Pedersen, Sarah J. Lessard, Vernon G. Coffey, Emmanuel G. Churchley, Andrew M. Wootton, They Ng, Matthew J. Watt and John A. Hawley. Dr. Pedersen is with the Garvan Institute of Medical Research in Sydney, Australia, Dr. Watt is from St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia. All others are with the Royal Melbourne Institute of Technology University (RMIT) in Bundoora, Victoria, Australia.

A fuller audio interview with Dr. Hawley is available in Episode 11 of the APS podcast, Life Lines, at www.lifelines.tv. The show also includes an interview with Dr. Stanley Schultz, whose physiological discovery of how sugar is transported in the gut led to the development of oral rehydration therapy and sports drinks such as Gatorade and Hi-5.

Caffeine aids carbohydrate uptake  

It is already established that consuming carbohydrate and caffeine prior to and during exercise improves a variety of athletic performances. This is the first study to show that caffeine combined with carbohydrates following exercise can help refuel the muscle faster.

“If you have 66% more fuel for the next day’s training or competition, there is absolutely no question you will go farther or faster,” said Dr. Hawley, the study’s senior author. Caffeine is present in common foods and beverages, including coffee, tea, chocolate and cola drinks.

The study was conducted on seven well-trained endurance cyclists who participated in four sessions. The participants first rode a cycle ergometer until exhaustion, and then consumed a low-carbohydrate dinner before going home. This exercise bout was designed to reduce the athletes’ muscle glycogen stores prior to the experimental trial the next day.

The athletes did not eat again until they returned to the lab the next day for the second session when they again cycled until exhaustion. They then ingested a drink that contained carbohydrate alone or carbohydrate plus caffeine and rested in the laboratory for four hours. During this post-exercise rest time, the researchers took several muscle biopsies and multiple blood samples to measure the amount of glycogen being replenished in the muscle, along with the concentrations of glucose-regulating metabolites and hormones in the blood, including glucose and insulin.

The entire two-session process was repeated 7-10 days later. The only difference was that this time, the athletes drank the beverage that they had not consumed in the previous trial. (That is, if they drank the carbohydrate alone in the first trial, they drank the carbohydrate plus caffeine in the second trial, and vice versa.)

The drinks looked, smelled and tasted the same and both contained the same amount of carbohydrate. Neither the researchers nor the cyclists knew which regimen they were receiving, making it a double-blind, placebo-controlled experiment.

Glucose and insulin levels higher with caffeine ingestion
The researchers found the following:  
  • one hour after exercise, muscle glycogen levels had replenished to the same extent whether or not the athlete had the drink containing carbohydrate and caffeine or carbohydrate only
  • four hours after exercise, the drink containing caffeine resulted in 66% higher glycogen levels compared to the carbohydrate-only drink
  • throughout the four-hour recovery period, the caffeinated drink resulted in higher levels of blood glucose and plasma insulin
  • several signaling proteins believed to play a role in glucose transport into the muscle were elevated to a greater extent after the athletes ingested the carbohydrate-plus-caffeine drink, compared to the carbohydrate-only drink

 Dr. Hawley said it is not yet clear how caffeine aids in facilitating glucose uptake from the blood into the muscles. However, the higher circulating blood glucose and plasma insulin levels were likely to be a factor. In addition, caffeine may increase the activity of several signaling enzymes, including the calcium-dependent protein kinase and protein kinase B (also called Akt), which have roles in muscle glucose uptake during and after exercise.

Lower dose is next step  

In this study, the researchers used a high dose of caffeine to establish that it could help the muscles convert ingested carbohydrates to glycogen more rapidly. However, because caffeine can have potentially negative effects, such as disturbing sleep or causing jitteriness, the next step is to determine whether smaller doses could accomplish the same goal.

Hawley pointed out that the responses to caffeine ingestion vary widely between individuals. Indeed, while several of the athletes in the study said they had a difficult time sleeping the night after the trial in which they ingested caffeine (8 mg per kilogram of body weight, the equivalent of drinking 5-6 cups of strong coffee), several others fell asleep during the recovery period and reported no adverse effects.

Athletes who want to incorporate caffeine into their workouts should experiment during training sessions well in advance of an important competition to find out what works for them.

 —————————-
Article adapted by MD Sports from original press release.
—————————-

Contact: Christine Guilfoy
American Physiological Society

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS) has been an integral part of this scientific discovery process since it was established in 1887.

Boosting an exercise-related gene in the brain works as a powerful anti-depressant in mice—a finding that could lead to a new anti-depressant drug target, according to a Yale School of Medicine report in Nature Medicine.

“The VGF exercise-related gene and target for drug development could be even better than chemical antidepressants because it is already present in the brain,” said Ronald Duman, professor of psychiatry and senior author of the study.

Depression affects 16 percent of the population in the United States, at a related cost of $83 billion each year. Currently available anti-depressants help 65 percent of patients and require weeks to months before the patients experience relief.

Duman said it is known that exercise improves brain function and mental health, and provides protective benefits in the event of a brain injury or disease, but how this all happens in the brain is not well understood. He said the fact that existing medications take so long to work indicates that some neuronal adaptation or plasticity is needed.

He and his colleagues designed a custom microarray that was optimized to show small changes in gene expression, particularly in the brain’s hippocampus, a limbic structure highly sensitive to stress hormones, depression, and anti-depressants.

They then compared the brain activity of sedentary mice to those who were given running wheels. The researchers observed that the mice with wheels within one week were running more than six miles each night. Four independent array analyses of the mice turned up 33 hippocampal exercise-regulated genes—27 of which had never been identified before.

The action of one gene in particular—VGF—was greatly enhanced by exercise. Moreover, administering VGF functioned like a powerful anti-depressant, while blocking VGF inhibited the effects of exercise and induced depressive-like behavior in the mice.

“Identification of VGF provides a mechanism by which exercise produces antidepressant effects,” Duman said. “This information further supports the benefits of exercise and provides a novel target for the development of new antidepressants with a completely different mechanism of action than existing medications.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Jacqueline Weaver
Yale University
Nature Medicine

Trying to reap the health benefits of exercise? Forget treadmills and spin classes, researchers at the Salk Institute for Biological Studies may have found a way around the sweat and pain. They identified two signaling pathways that are activated in response to exercise and converge to dramatically increase endurance.

The team of scientists, led by Howard Hughes Medical Investigator Ronald M. Evans, Ph.D., a professor in the Salk Institute’s Gene Expression Laboratory report in the July 31 advance online edition of the journal Cell that simultaneously triggering both pathways with oral drugs turned laboratory mice into long-distance runners and conferred many of exercise’s other benefits.

In addition to their allure for endurance athletes, drugs that mimic the effects of exercise have therapeutic potential in treating certain muscle diseases, such as wasting and frailty, hospital patients unable to exercise, veterans and others with disabilities as well as obesity and a slew of associated metabolic disorders where exercise is known to be beneficial.

Previous work with genetically engineered mice in the Evans lab had revealed that permanently activating a genetic switch known as PPAR delta turned mice into indefatigable marathon runners. In addition to their super-endurance, the altered mice were resistant to weight gain, even when fed a high-fat diet that caused obesity in ordinary mice. On top of their lean and mean physique, their response to insulin improved, lowering levels of circulating glucose.

“We wanted to know whether a drug specific for PPAR delta would have the same beneficial effects,” says Evans. “Genetic engineering in humans, commonly known as gene doping when mentioned in connection with athletic performance, is certainly feasible but very impractical.”

An investigational drug, identified only as GW1516 (and not commercially available), fit the bill. When postdoctoral researcher and lead author Vihang A. Narkar, Ph.D., fed the substance to laboratory mice over a period of four weeks, the researchers were in for a surprise.

“We got the expected benefits in lowering fatty acids and blood glucose levels but no effect, absolutely none, on exercise performance,” says Narkar. Undeterred, he put mice treated with GW1516 on a regular exercise regimen and every day had them run up to 50 minutes on a treadmill.

Now the exact same drug that had shown no effect in sedentary animals improved endurance by 77 percent over exercise alone and increased the portion of “non-fatiguing” or “slow twitch” muscle fibers by 38 percent. The result, while very dramatic, gave rise to a vexing question: Why is exercise so important?

First and foremost, exercise depletes muscles’ energy store, a chemical known as ATP. In times of high demand, ATP releases all its energy and forms AMP. Rising AMP levels alert AMPK, a metabolic master regulator, which acts like a gas gauge that the cell is running on empty and revs up the production of ATP. “That led us to consider whether AMPK activation was the critical trigger that allowed PPAR delta to work,” recalls Narkar.

Usually, AMPK can be found in the cytoplasm, the compartment that surrounds the nucleus, but the Salk researchers’ experiment revealed that some exercise-activated AMPK molecules slip into the nucleus. There they physically interact with PPAR delta and increase its ability to turn on the genetic network that increases endurance.

“It essentially puts a turbo charge on PPAR delta, which explains why exercise is so important,” says Evans.

Then came the ultimate couch potato experiment. The researchers fed untrained mice AICAR, a synthetic AMP analog that directly activates AMPK. After only four weeks and without any prior training, these mice got up and ran 44 percent longer than untreated, untrained mice. “That’s as much improvement as we get with regular exercise,” says Narkar.

“Exercise in a pill” might sound tempting to couch potatoes and Olympic contenders alike, but the dreams of the latter might be cut short. Evans developed a test that can readily detect GW1516 and its metabolites as well as AICAR in blood and urine and is already working with officials at the World Anti-Doping Association, who are racing to have a test in place in time for this year’s Summer Olympics.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Gina Kirchweger
Salk Institute

The study was supported by the Howard Hughes Medical Institute, the Hillblom Foundation and the National Institute of Health.

Researchers who contributed to the work include postdoctoral researchers Michael Downes, Ph.D., Ruth T. Yu, Ph.D., doctoral candidate Emi Embler, B.S., research associates Michael C. Nelson, B.S., Yuhua Zou, M.S., Ester Banayo, and Henry Juguilon, in the Gene Expression Laboratory, doctoral candidate M. Mihaylova, and assistant professor Reuben Shaw, Ph.D., in the Molecular and Cell Biology Laboratory, assistant professor Yong-Xu Wang, Ph.D., at the University of Massachusetts Medical School, Massachusetts, and professor Heonjoon Kang, Ph.D., at the School of Earth and Environmental Sciences, Seoul National University, South Korea.

Baseball team owners, players and fans seem to agree on the importance of drug testing for steroids, according to current reports, but the entire scope of performance-enhancing substances available for all athletes is vastly broader and many of the drugs employed by athletes are not easily detectable, says a Penn State researcher.”The use, misuse and abuse of drugs have long shaken the foundations of amateur and professional sports–baseball, football, track and field, gymnastics and cycling, to name just a few,” says Dr. Charles Yesalis, Penn State professor of exercise and sport science and health policy and administration. “The problem is not new. But like the rest of technology, doping in sport has grown in scientific and ethical complexity. In addition to drugs, we have natural hormones, blood doping, diuretics, nutritional supplements, social and recreational drugs, stimulants and miscellaneous substances, some of which may not even be on any list of banned substances.”

While drug testing technology struggles to keep up, an array of new and emerging technologies has arrived or is on the horizon with potential for abuse by athletes including gene transfer therapy, stem cell transplantation, muscle fiber phenotype transformation, red blood cell substitutes and new drug delivery systems, says Yesalis

“It is not too hard to imagine the day when muscles can be selectively enlarged or contoured,” according to the book. “Just imagine the consequences of a kinesiologist isolating specific muscles and selectively injecting designer genes into those muscles to maximize their function.”

The new book brings together the latest and most comprehensive scientific information about performance-enhancing substances, as well as discussion of drug testing, legal and social issues, and future directions by sports governing organizations.

“Sport has a responsibility to maintain a level playing field for the trial of skill,” Yesalis says. “The use of chemical and pharmacologist agents is cheating – just like using a corked baseball bat. But unlike the bat, doping is shrouded in mystery. Athletes and their advisors are constantly seeking ‘gray areas” surrounding the rules, and if something is not explicitly banned, then why not try it. This slippery slope of rationalization is treacherous and appealing to a player or team seeking glory and money rewards.”

In one chapter, “Drug Testing and Sport and Exercise,” author R. Craig Kammerer suggests that improvement in current tests and developments in new methods will assist future policymaking by athletic federations. However, effective testing must become more widespread and include unannounced testing outside of competition. Sanctions against athletes must be more fairly and uniformly applied, with thorough investigation to avoid false positive results and ruin an athlete’s career.

The difficulty of detecting and preventing the abuse of performance enhancing substances by adult athletes may seem futile but remains necessary as part of the effort to discourage abuse by youths who emulate professional athletes and also seek a winning advantage, Yesalis notes.

A recent government study of adolescent drug use shows an alarming increase in anabolic steroid use among middle school youths from 1998-1999 with an estimated 2.7 percent of eighth graders saying they have used the drugs. A larger survey by Blue Cross and Blue Shield estimates that one million U.S. children between the ages of 12 and 17 may have taken performance-enhancing substances including creatine, according to the book.

“Children and teens can seriously harm their future health by misusing these substances,” Yesalis says. “For example, steroids alone can cause scarring acne, hair loss and testicular atrophy, and may increase the risk of stroke and heart disease. It is just as important to note that little is known about the health consequences of many of the other substances used to enhance performance. Yet some coaches and parents look the other way and even actively encourage the use of performance-enhancing substances in pursuit of scholarships and winning.

“There is too much fame and fortune to be gained by being a winner in sports,” he notes. “It’s interesting to see that baseball fans being polled support drug testing and a ban on steroids, but it will take fans of all major sports to take a stand by turning off their TV sets or not buying a ticket to sports events before adult athletes, coaches and team owners stop trying to cheat. And, that’s probably not going to happen.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Vicki Fong
Penn State