Archive for the ‘Heart Support’ Category

Women who walked two or more hours a week or who usually walked at a brisk pace (3 miles per hour or faster) had a significantly lower risk of stroke than women who didn’t walk, according to a large, long-term study reported in Stroke: Journal of the American Heart Association.

The risks were lower for total stroke, clot-related (ischemic) stroke and bleeding (hemorrhagic) stroke, researchers said.

Compared to women who didn’t walk:

  • Women who usually walked at a brisk pace had a 37 percent lower risk of any type of stroke and those who walked two or more hours a week had a 30 percent lower risk of any type of stroke.
  • Women who typically walked at a brisk pace had a 68 percent lower risk of hemorrhagic stroke and those who walked two or more hours a week had a 57 percent lower risk of hemorrhagic stroke.
  • Women who usually walked at a brisk pace had a 25 percent lower risk of ischemic stroke and those who usually walked more than two hours a week had a 21 percent lower risk of ischemic stroke — both “borderline significant,” according to researchers.

“Physical activity, including regular walking, is an important modifiable behavior for stroke prevention,” said Jacob R. Sattelmair, M.Sc., lead author and doctoral candidate in epidemiology at Harvard School of Public Health in Boston, Mass. “Physical activity is essential to promoting cardiovascular health and reducing risk of cardiovascular disease, and walking is one way of achieving physical activity.”

More physically active people generally have a lower risk of stroke than the least active, with more-active persons having a 25 percent to 30 percent lower risk for all strokes, according to previous studies.

“Though the exact relationship among different types of physical activity and different stroke
subtypes remains unclear, the results of this specific study indicate that walking, in particular, is associated with lower risk of stroke,” Sattelmair said.

Researchers followed 39,315 U.S. female health professionals (average age 54, predominantly white) participating in the Women’s Health Study. Every two to three years, participants reported their leisure-time physical activity during the past year — specifically time spent walking or hiking, jogging, running, biking, doing aerobic exercise/aerobic dance, using exercise machines, playing tennis/squash/racquetball, swimming, doing yoga and stretching/toning. No household, occupational activity or sedentary behaviors were assessed.

They also reported their usual walking pace as no walking, casual (about 2 mph), normal (2.9 mph), brisk (3.9 mph) or very brisk (4 mph).

Sattelmair noted that walking pace can be assessed objectively or in terms of the level of exertion, using a heart rate monitor, self-perceived exertion, “or a crude estimate such as the ‘talk test’ – wherein, for a brisk pace, you should be able to talk but not able to sing. If you cannot talk, slow down a bit. If you can sing, walk a bit faster.”

During 11.9 years of follow-up, 579 women had a stroke (473 were ischemic, 102 were hemorrhagic and four were of unknown type).

The women who were most active in their leisure time activities were 17 percent less likely to have any type of stroke compared to the least-active women.

Researchers didn’t find a link between vigorous activity and reduced stroke risk. The reason is unclear, but they suspect that too few women reported vigorous activity in the study to get an accurate picture and/or that moderate-intensity activity may be more effective at lowering blood pressure as suggested by some previous research.

Stroke is the third leading cause of death and a leading cause of serious disability in the United States, so it’s important to identify modifiable risk factors for primary prevention, Sattelmair said.

An inverse association between physical activity and stroke risk is consistent across genders. But there tend to be differences between men and women regarding stroke risk and physical activity patterns.

“The exact relation between walking and stroke risk identified in this study is not directly generalizable to men,” Sattelmair said. “In previous studies, the relation between walking and stroke risk among men has been inconsistent.”

The study is limited because it was observational and physical activity was self-reported. But strengths are that it was large and long-term with detailed information on physical activity, he said.

Further study is needed on more hemorrhagic strokes and with more ethnically diverse women, Sattelmair said.

The American Heart Association recommends for substantial health benefits, adults should do at least 150 minutes a week of moderate-intensity or 75 minutes a week of vigorous-intensity aerobic physical activity or a combination.

———————————–
Article adapted by MD Sports from original press release.
———————————–
Contact: Birdgette McNeill
American Heart Association

Advertisements

Endorphins and other morphine-like substances known as opioids, which are released during exercise, don’t just make you feel good — they may also protect you from heart attacks, according to University of Iowa researchers.

It has long been known that the so-called “runner’s high” is caused by natural opioids that are released during exercise. However, a UI study, which is published in the online edition of the American Journal of Physiology’s Heart and Circulatory Physiology, suggests that these opioids may also be responsible for some of exercise’s cardiovascular benefits.

Working with rats, UI researchers showed that blocking the receptors that bind morphine, endorphins and other opioids eliminates the cardiovascular benefits of exercise. Moreover, the UI team showed that exercise was associated with increased expression of several genes involved in opioid pathways that appear to be critical in protecting the heart.

“This is the first evidence linking the natural opioids produced during exercise to the cardio-protective effects of exercise,” said Eric Dickson, M.D., UI associate professor and head of emergency medicine in the Roy J. and Lucille A. Carver College of Medicine and the study’s lead investigator. “We have known for a long time that exercise is great for the heart. This study helps us better understand why.”

Studies have shown that regular vigorous exercise reduces the risk of having a heart attack and improves survival rates following heart attack, even in people with cardiovascular disease. In addition, exercise also decreases the risk of atherosclerosis, stroke, osteoporosis and even depression. However, despite these proven health benefits, much less is understood about how exercise produces these benefits.

The UI study investigated the idea that the opioids produced by exercise might have a direct role in cardio-protection. The researchers compared rats that exercised with rats that did not. As expected, exercised rats sustained significantly less heart damage from a heart attack than non-exercised rats. The researchers then showed that blocking opioid receptors completely eliminated these cardio-protective effects in exercising rats, suggesting that opioids are responsible for some of the cardiac benefits of exercise.

The UI team also showed that exercise was associated with transient increases in expression of several opioid system genes in heart muscle, and changes in expression of other genes that are involved in inflammation and cell death. The researchers plan to investigate whether these altered gene expression patterns reveal specific cardio-protective pathways.

A better understanding of how exercise protects the heart may eventually allow scientists to harness these protective effects for patients with decreased mobility.

“Hopefully this study will move us closer to developing therapies that mimic the benefits of exercise,” Dickson said. “It also serves as a reminder of how important it is to get out and exercise every day.”

—————————-
Article adapted by MD Only Weblog from original press release.
—————————-

Contact: Jennifer Brown
University of Iowa

In addition to Dickson, the UI research team included Christopher Hogrefe, Paula Ludwig, Laynez Ackermann, Lynn Stoll, Ph.D., and Gerene Denning, Ph.D.

STORY SOURCE: University of Iowa Health Science Relations, 5135, Westlawn, Iowa City, Iowa 52242-1178

ORIGINAL ARTICLE: Abstract is available Click here