Archive for the ‘Obesity’ Category

Adding extra weight doesn’t just lead to a higher risk for heart disease and diabetes… it also can lead to unwanted consequences in the bedroom. A new study in the British medical Journal showed that obese women tend to have a much higher incidence of unintended pregnancy. The indication is obese women tend more often not to seek birth control measures from their doctor as a result of body issues. Additionally, those who were obese had partners who were obese, which may perpetuate a further unhealthy lifestyle.

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered a process that controls the amount of fat that cells store for use as a back-up energy source. Disruption of this process allows cellular fat to accumulate — a key factor in age-related metabolic diseases such as obesity and type 2 diabetes. The study is published today in the online version of Nature.

Discovery of this previously unknown fat-fighting pathway could lead to novel drugs for the treatment of metabolic syndrome (characterized by obesity, blood lipid disorders, and insulin resistance) and for a common liver disease known as “fatty liver” or steatohepatitis. Nonalcoholic steatohepatitis (NASH) is a common, often “silent” liver disease. Although NASH resembles alcoholic liver disease, it occurs in people who drink little or no alcohol. NASH affects 2 to 5 percent of Americans, according to the National Institute of Diabetes and Digestive and Kidney Diseases.

All cells store lipids, a type of fat, in the form of small droplets that can be broken down for energy when needed. In situations of excessive food intake or in certain diseases such as diabetes or obesity, these lipid droplets become so large that they interfere with normal cell function.

“In this study, we found that the amount of fat stored in these intracellular lipid droplets is controlled through autophagy, a process until now thought to help primarily in digesting and recycling damaged cellular structures,” says Mark Czaja, M.D., professor of medicine at Einstein whose team worked collaboratively on the research with the laboratory of Ana Maria Cuervo, M.D., Ph.D., associate professor of developmental & molecular biology, medicine, and anatomy & structural biology at Einstein.

Autophagy, or “self-eating,” is carried out by lysosomes, which function as the cell’s recycling center. In studies of liver cells in culture and in live animals, Dr. Czaja and his colleagues discovered that lysosomes do something never before observed: continuously remove portions of lipid droplets and process them for energy production.

“When food is scarce, autophagy becomes a main source of energy for the cells and this process of digesting lipid droplets is accelerated,” says Dr. Cuervo. “If autophagy slows down, as occurs in aging, the lipid droplets stored in cells keep growing and eventually become so big that they can no longer be degraded.”

This slowdown in fat control appears to trigger a vicious cycle in which the enlarging fat droplets impair autophagy, allowing even more fat to accumulate, and so on, which could eventually contribute to diseases such as diabetes. The researchers noted that therapies aimed at helping autophagy operate more efficiently might prevent disease by keeping fat droplets under control.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Deirdre Branley
Albert Einstein College of Medicine

Drs. Cuervo and Czaja’s paper, “Autophagy regulates lipid metabolism” is published in the April 1 online version of Nature. Their co-authors at Einstein include Rajat Singh and Susmita Kaushik (primary co-authors), Yongjun Wang, Youqing Xiang, and Inna Novak; as well as Masaaki Komatsu and Keiji Tanaka of the Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo, Japan.

###
About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation’s premier centers for research, medical education and clinical investigation. It is the home to some 2,000 faculty members, 750 M.D. students, 350 Ph.D. students (including 125 in combined M.D./Ph.D. programs) and 380 postdoctoral investigators. Last year, Einstein received more than $130 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five hospital centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College runs one of the largest post-graduate medical training program in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training. For more information, please visit http://www.aecom.yu.edu.

Lower muscle mass and an increase in body fat are common consequences of growing older.

While exercise is a proven way to prevent the loss of muscle mass, a new study led by McMaster researcher Dr. Mark Tarnopolsky shows that taking a combination of creatine monohydrate (CrM) and conjugated linoleic acid (CLA) in addition to resistance exercise training provides even greater benefits.

The study to be published on Oct. 3 in PLoS One, an international, peer-reviewed online journal of the Public Library of Science, involved 19 men and 20 women who were 65 years or older and took part in a six-month program of regular resistance exercise training.

In the randomized double blind trial, some of the participants were given a daily supplement of creatine (a naturally produced compound that supplies energy to muscles) and linoleic acid (a naturally occurring fatty acid), while others were given a placebo. All participants took part in the same exercise program.

The exercise training resulted in improvements of functional ability and strength in all participants, but those taking the CrM and CLA showed even greater gains in muscle endurance, an increase in fat-free mass and a decrease in the percentage of body fat.

“This data confirms that supervised resistance exercise training is safe and effective for increasing strength and function in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six month period,” said Tarnopolsky, a professor of pediatrics and medicine.

This study provides functional outcomes that build on an earlier mechanistic study co-led by Tarnopolsky and Dr. S. Melov at the Buck Institute of Age Research, published in PLoS One this year, which provided evidence that six months of resistance exercise reversed some of the muscle gene expression abnormalities associated with the aging process.
—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Veronica McGuire
McMaster University

A new pair of studies compare step counts needed to meet 1) ACSM/CDC recommendations for moderate physical activity and 2) a one-mile mark. Both studies are useful as suggested step-based guidelines for meeting physical activity recommendations.

The first study, funded by the Centers for Disease Control and Prevention, was designed to translate ACSM/CDC public health guidelines for 30 minutes of daily moderate-intensity physical activity into steps. Researchers at San Diego State University and Arizona State University utilized commercial pedometers on a community sample of adults. Their results support an approximate 100 step/minute recommendation for minimally moderate intensity. To meet ACSM/CDC recommendations, this equates to 3,000 steps in 30 minutes, or three daily bouts of 1,000 steps in 10 minutes.

While pedometers are useful tools to measure step counts, this team notes pedometer-derived steps should be used with caution for gauging moderate intensity walking. Step counts associated with moderate intensity walking should be individualized based on stride length and level of fitness. ACSM defines moderate intensity walking as “brisk” walking, or “walking with purpose.” Walkers should be able to talk comfortably at a moderate-intensity level, but still feel exertion. Other definitions have included a pace at which you break a sweat and/or have a slight increase in your heart rate.

“Walking is one of the easiest forms of physical activity, and one that most people can do to meet recommendations for daily exercise,” said Simon J. Marshall, Ph.D., lead author of the study. “Most people have an instinct about the length of time or the distance they walk. A pedometer can help count steps, but when you also try to walk at least 1000 steps in 10 minutes on a regular basis, you may gain significant health benefits. For inactive people, setting smaller targets can help them start a program to meet general physical activity guidelines and enhance their health and wellness.”

In the one-mile study, researchers at Boise State University wanted to determine the number of steps individuals take while walking one mile at 20 and 15-minute paces and while running the same distance at 12, 10, eight, and six-minute paces. One mile (1,609 meters) step count varies at different walking and running speeds and can be predicted based on gender, pace, and height or leg length.

The average number of steps required to run/walk a mile ranged from 1,064 steps for a six-minute-mile pace in men to 2,310 steps for a 20-minute per mile walk in women. An interesting finding is that on average, individuals took more steps while running (jogging) a 12-minute mile than while walking a 15-minute mile (1,951 vs.1,935 steps, respectively). This finding is most likely related to the smaller distance between steps that people tend to take while jogging at the slower speed (12-minute mile) compared to walking at a 15-minute per mile pace.

“A ‘mile’ appears to be universally known as a marker of distance for walkers and runners to measure their activity achievements,” said Werner Hoeger, Ed.D., FACSM, lead author. “To estimate the number of steps required to walk or run a mile at selected speeds is likely to help people who monitor their steps with a pedometer with the objective of increasing their fitness by working up the miles.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-
The American College of Sports Medicine is the largest sports medicine and exercise science organization in the world. More than 20,000 international, national, and regional members are dedicated to advancing and integrating scientific research to provide educational and practical applications of exercise science and sports medicine.

http://www.acsm.org

And it increases endurance to run a mile and decreases inflammation

The Salk Institute scientist who earlier discovered that enhancing the function of a single protein produced a mouse with an innate resistance to weight gain and the ability to run a mile without stopping has found new evidence that this protein and a related protein play central roles in the body’s complex journey to obesity and offer a new and specific metabolic approach to the treatment of obesity related disease such as Syndrome X (insulin resistance, hyperlipidemia and atherosclerosis).

Dr. Ronald M. Evans, a Howard Hughes Medical Investigator at The Salk Institute’s Gene Expression Laboratory, presented two new studies (date) at Experimental Biology 2005 in the scientific sessions of the American Society for Biochemistry and Molecular Biology. The studies focus on genes for two of the nuclear hormone receptors that control broad aspects of body physiology, including serving as molecular sensors for numerous fat soluble hormones, Vitamins A and D, and dietary lipids.

The first study focuses on the gene for PPARd, a master regulator that controls the ability of cells to burn fat. When the “delta switch” is turned on in adipose tissue, local metabolism is activated resulting in increased calorie burning. Increasing PPARd activity in muscle produces the “marathon mouse,” characterized by super-ability for long distance running. Marathon mice contain altered muscle composition, which doubles its physical endurance, enabling it to run an hour longer than a normal mouse. Marathon mice contain increased levels of slow twitch (type I) muscle fiber, which confers innate resistance to weight gain, even in the absence of exercise.

Additional work to be reported at Experimental Biology looks at another characteristic of PPARd: its role as a major regulator of inflammation. Coronary artery lesions or atherosclerosis are thought to be sites of inflammation. Dr. Evans found that activation of PPARd suppresses the inflammatory response in the artery, dramatically slowing down lesion progression. Combining the results of this new study with the original “marathon mouse” findings suggests that PPARd drugs could be effective in controlling atherosclerosis by limiting inflammation and at the same time promoting improved physical performance.

Dr. Evans says he is very excited about the therapeutic possibilities related to activation of the PPARd gene. He believes athletes, especially marathon runners, naturally change their muscle fibers in the same way as seen in the genetically engineered mice, increasing levels of fat-burning muscle fibers and thus building a type of metabolic ‘shield” that keeps them from gaining weight even when they are not exercising.

But athletes do it through long periods of intensive training, an approach unavailable to patients whose weight or medical problems prevent them from exercise. Dr. Evans believes activating the PPARd pathway with drugs (one such experimental drug already is in development to treat people with lipid metabolism) or genetic engineering would help enhance muscle strength, combat obesity, and protect against diabetes in these patients.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Sarah Goodwin
Federation of American Societies for Experimental Biology

New research on the effects of the female sex hormone estrogen in the brain lend credence to what many women have suspected about the hormonal changes that accompany aging: Menopause can make you fat.Scientists long have sought to understand how changes in hormones during menopause could account for the increase in appetite and accompanying weight gain that often occurs among aging women.

In a series of animal experiments described today at the 234th national meeting of the American Chemical Society, the world’s largest scientific society, researchers showed how estrogen receptors located in the hypothalamus serve as a master switch to control food intake, energy expenditure and body fat distribution. When these receptors are destroyed, the animals immediately begin to eat more food, burn less energy and pack on pounds.

This research seems to support a link between estrogen and regulation of obesity, especially the dangerous accumulation of abdominal fat linked to heart disease, diabetes, and cancer, says Deborah J. Clegg, Ph. D., assistant professor of psychiatry at the University of Cincinnati Academic Health Center, who is directing the studies.

The findings may also help scientists develop more targeted hormone replacement therapies, capable of stimulating estrogen receptors in one part of the brain or body while dampening it in the next, Clegg says.

Estrogen receptors are located on cells throughout a woman’s body. Previous studies have shown that one type of estrogen receptor, known as estrogen receptor alpha or ER-alpha, plays a role in regulating food intake and energy expenditure. But scientists have been unable to pinpoint exactly where these fat-regulating receptors reside or how they work to govern these behaviors.

To determine the effect of dwindling estrogen levels in the brain, Clegg and her colleagues are focusing on two ER-alpha rich regions located in the hypothalamus, an area of the brain that controls body temperature, hunger and thirst. The first region, called the ventromedial nucleus or VMN, is a key center for energy regulation.

Using a relatively new gene-silencing technique called RNA interference, the researchers in earlier research deactivated the alpha-receptors in the VMN. The estrogen receptors in other regions of the brain maintained their normal capacity.

When estrogen levels in the VMN dipped, the animals’ metabolic rate and energy levels also plummeted. The findings show the animals quickly developed an impaired tolerance to glucose and a sizable weight gain, even when their caloric intake remained the same. What’s more, the excess weight went straight to their middle sections, creating an increase in visceral fat.

The findings suggested that the ER-alpha in this region plays an essential role in controlling energy balance, body fat distribution and normal body weight.

Clegg now plans to perform a similar experiment to deactivate ER-alpha in the arcuate nucleus region of the hypothalamus. This region contains two populations of neurons: one puts the brake on food intake and the other stimulates food intake. Clegg anticipates that a loss of estrogen in this region may create an increase in the animals’ appetites as well as their weight.

Clegg says her studies address an area that is sorely needed given the incidence and impact of gender differences in obesity and its complications.

“The accumulation of abdominal fat puts both men and women at a heightened risk of cardiovascular disease, diabetes, and insulin resistance,” she says. “Women are protected from these negative consequences as long as they carry their weight in their hips and saddlebags. But when they go through menopause and the body fat shifts to the abdomen, they have to start battling all of these medical complications.”

By identifying the critical brain regions that determine where body fat is distributed, Clegg says her findings may help scientists design hormone replacement therapies to better manage and manipulate estrogen levels.

“If we could target those critical regions and estrogen receptors associated with weight gain and energy expenditure, we could perhaps design therapies that help women sidestep many of the complications brought on by the onset of menopause,” she says.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Charmayne Marsh
American Chemical Society

 The American Chemical Society — the world’s largest scientific society — is a nonprofit organization chartered by the U.S. Congress and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Deborah J. Clegg, Ph.D., is assistant professor of psychiatry at the University of Cincinnati Academic Health Center in Cincinnati, Ohio.

The old adage “use it or lose it” is truer than ever. People who maintain a vigorously active lifestyle as they age gain less weight than people who exercise at more moderate levels, according to a first-of-its-kind study that tracked a large group of runners who kept the same exercise regimen as they grew older. The study also found that maintaining exercise with age is particularly effective in preventing extreme weight gain, which is associated with high blood pressure, high cholesterol, diabetes, and other diseases.

The study, conducted by Paul Williams of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), followed 6,119 men and 2,221 women who maintained their weekly running mileage (to within three miles per week) over a seven-year period. On average, the men and women who ran over 30 miles per week gained half the weight of those who ran less than 15 miles per week.

“To my knowledge, this is the only study of its type,” says Williams, a staff scientist in Berkeley Lab’s Life Sciences Division. “Other studies have tracked exercise over time, but the majority of people will have changed their exercise habits considerably.”

The research is the latest report from the National Runners’ Health Study, a 20-year research initiative started by Williams that includes more than 120,000 runners. It appears in the May issue of the journal Medicine and Science in Sports and Exercise.

Specifically, between the time subjects entered the study and when they were re-contacted seven years later, 25-to-34-year-old men gained 1.4 pounds annually if they ran less than 15 miles per week. In addition, male runners gained 0.8 pounds annually if they ran between 15 and 30 miles per week, and 0.6 pounds annually if they ran more than 30 miles per week.

This trend is mirrored in women. Women between the ages of 18 and 25 gained about two pounds annually if they ran less than 15 miles per week, 1.4 pounds annually if they ran 15 to 30 miles per week, and slightly more than three-quarters of a pound annually if they ran more than 30 miles per week. Other benefits to running more miles each week included fewer inches gained around the waist in both men and women, and fewer added inches to the hips in women.

“As these runners aged, the benefits of exercise were not in the changes they saw in their bodies, but how they didn’t change like the people around them,” says Williams.

Although growing older and gaining weight is something of a package deal, it isn’t the same in everyone. The lucky few remain lean as they age, most people pack on several pounds, and some people become obese. The latter group is particularly at risk for high blood pressure, high cholesterol, and diabetes. Fortunately, Williams’ results show that maintaining exercise can combat such extreme weight gain.

“Getting people to commit to a vigorously active lifestyle while young and lean will go a long way to reducing the obesity epidemic in this country,” says Williams.

Another paper published in the November 2006 issue of the journal Obesity by Williams and Paul Thompson of Hartford (CT) Hospital found that runners who increased their running mileage gained less weight than those who remained sedentary, and runners that quit running became fatter.

“The time to think about exercise is before you think you need it,” says Williams. “The medical journals are full of reports on how difficult it is to regain the slenderness of youth. The trick is not to get fat.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Dan Krotz
DOE/Lawrence Berkeley National Laboratory

Williams’ research was funded by the National Heart, Lung and Blood Institute. The study in the May issue of the journal Medicine and Science in Sports and Exercise is entitled Maintaining Vigorous Activity Attenuates 7-yr Weight Gain in 8,340 Runners.