Archive for the ‘anabolic steroid’ Category

Research news from Journal of Mass Spectrometry

A new mass spectrometry test can help sports anti-drug doping officials to detect whether an athlete has used drugs that boost naturally occurring steroid levels. The test is more sensitive compared to previous alternatives, more capable of revealing specific suspicious chemical in the body, faster to perform, and could be run on standard drug-screening laboratory equipment. The new test is announced in a special issue of the Journal of Mass Spectrometry that concentrates on detecting drugs in sports.

One of the roles of the masculinising hormone testosterone is to increase muscle size and strength. Taking extra testosterone, or taking a chemical that the body can use to create extra testosterone, could therefore enhance an athlete’s performance. For this reason taking it is banned by the World Anti-Doping Agency (WADA).

The exact level of testosterone varies considerably between different people, so simply measuring total testosterone in an athlete’s urine can not show whether he or she has deliberately taken extra. There is, however, a second chemical in the body, epitestosterone, which is normally present in approximately equal proportions to testosterone. Comparing the ratio of testosterone to epitestosterone can then indicate whether testosterone or a precursor has been taken.

The problem is that it is not always easy to measure these two substances, particularly as they are only present in urine at very low concentrations.

A team of scientists the Sports Medicine Research and Testing Laboratory at the University of Utah have developed a test that makes use of liquid chromatography-tandem mass spectrometry. This method has incredibly high sensitivity (down to 1 ng/ml) and increases the power with which officials can search for both testosterone and epitestosterone within a sample.

“Our system means that we can determine the testosterone/epitestosterone ratio in a sample with greater confidence, and therefore be in a better position to spot doping violations without falsely accusing innocent athletes,” says lead investigator Dr Jonathan Danaceau.

“Not only is the test more sensitive, it is also faster to perform,” says colleague Scott Morrison.

“Having this sort of test available makes cheating harder and lets us take one more step towards enabling free and fair competition,” says Laboratory Director Dr Matthew Slawson.

This paper is part of a special issue for the Olympic Games from the Journal of Mass Spectrometry which focuses of drug use in sport. The issue is available free of charge online for one month at http://www.interscience.wiley.com/journal/jms. The other articles publishing in this issue are:

 

  • History of Mass Spectrometry at Olympic Games (DOI: 10.1002/jms.1445)
  • Nutritional supplements cross-contaminated and faked with doping substances (DOI: 10.1002/jms.1452)
  • Hair analysis of anabolic steroids in connection with doping control results from horse samples (DOI: 10.1002/jms.1446)
  • Mass spectrometric determination of Gonadotrophin releasing hormone (GnRH) in human urine for doping control purposes by means of LC-ESI-MS/MS (DOI: 10.1002/jms.1438)
  • Liquid chromatographic-mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: method validation and inter-laboratory comparison (DOI: 10.1002/jms.1434)
  • Mass Spectrometry of Selective Androgen Receptor Modulators (DOI: 10.1002/jms.1438)
  • Can glycans unveil the origin of glycoprotein hormones? – human chorionic gonadotropin as an example (DOI: 10.1002/jms.1448)
  • A High-Throughput Multicomponent Screening Method for Diuretics, Masking Agents, Central Nervous System Stimulants and Opiates in Human Urine by UPLC-MS/MS (DOI: 10.1002/jms.1436)
  • The application of carbon isotope ratio mass spectrometry to doping control (DOI: 10.1002/jms.1437)
  • Identification of zinc-alpha-2-glycoprotein binding to clone ae7a5 anti-human epo antibody by means of nano-hplc and high-resolution highmass accuracy esi-ms/ms (DOI: 10.1002/jms.1444)
  • Low LC-MS/MS Detection of Glycopeptides Released from pmol Levels of Recombinant Erythropoietin using Nanoflow HPLC-Chip Electrospray Ionization (DOI: 10.1002/jms.1439)
  • Introduction of HPLC/Orbitrap mass spectrometry as screening method for doping control (DOI: 10.1002/jms.1447)

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jennifer Beal
Wiley-Blackwell

Advertisements

University Park, Pa. — Girls and boys are now equally caught up in the social pressure for a muscular body image currently lauded in popular culture. A Penn State researcher contends those pressures are leading girls and boys down unhealthy avenues such as the misuse of anabolic steroids.

“Young girls have always had to struggle against the media stereotypes of stick-thin models or voluptuous sexuality, but with the rising popularity of women sports, girls are bombarded with buffed body images,” says Dr. Charles Yesalis, professor of health policy and administration, and exercise and sports science at Penn State, and editor of the newest edition of the book “Anabolic Steroids in Sports and Exercise.” “Now, young boys face pop culture musclemen like The Rock and Steve Austin, given the influence of professional wrestling shows.”

“The current film ‘Charlie’s Angels’ sports karate-kicking women in cool clothes,” he added. “Today’s children look with envy at the physiques of actors Arnold Schwarzenegger, Jean-Claude Van Damme, Wesley Snipes, and Linda Hamilton, whose roles call for a muscular build. Hollywood stars are openly taking Human Growth Hormone (HGH) injections to combat aging.”

In addition, children are entering competitive sports at younger ages and many working families have children signed up in two or three sports. Parents, coaches and young athletes are facing growing violence in amateur athletics. The pressure to win at all costs continues to weigh heavily on children, Yesalis notes.

The concern is that many youths will take shortcuts to achieving a muscular build by using anabolic steroids. Female athletes also are pressured to achieve low body fat to excel in their sport. The Penn State researcher has seen evidence that the pressures are reaching down to young children. For example, the book cites figures from the Monitoring The Future Study, a national-level epidemiological survey conducted annually since 1975. Approximately 50,000 8th, 10th and 12 graders are surveyed each year.

The MTF data shows that during the 1990s, anabolic steroid use among 12 graders –both boys and girls – rose to an all-time high with more than 500,000 adolescents having cycled – an episode of use of 6 to 12 weeks – during their lifetime. And the percentage of girls alone doubled in the same period.

A 1998 study of 965 youngsters at four Massachusetts middle schools found that 2.7 percent admitted to taking illegal steroids for better sports performance. That included some boys and girls as young as 10 years old. “This year’s Olympic doping scandals and the epidemic of anabolic steroids in professional baseball just glorify and justify steroids to impressionable youths,” Yesalis notes. “The use of anabolic steroids has cascaded down from the Olympic, professional and college levels to high schools and junior high schools and now middle schools for athletes and non-athletes alike. ”

“Anabolic steroids are made to order for a female wanting to attain a lean athletic body. While most drug abuse has outcomes that tend to discourage use, females who use anabolic steroids may experience a decrease in body fat, increased muscle size and strength, and enhanced sports performance,” he says.

Girls and boys misusing anabolic steroids may win approval and rewards from parents, coaches and peers, but don’t realize there are long-term negative effects on their health, particularly girls, according to Yesalis. Young girls face potential permanent side effects of male hair growth or baldness, deepening of the voice, the enlargement of the clitoris as well as the known risks of heart and liver diseases.

Published by Human Kinetics, the book incorporates the latest research, experience and insights of 15 experts on the scientific, clinical, historical, legal and other aspects of steroid abuse and drug testing. New information looks at the effects of steroids on health, particularly that of women.

This year, trials of East German doctors, coaches and officials reveal records of systematic doping of young athletes without their own or parents’ knowledge. In 1974, officials’ plan to turn the tiny Communist nation into a superpower in sports included giving performance-enhancing drugs to all competing athletes including children as young as 10 years old. The indictments included 142 former East German athletes who now complain of health problems. In media reports, several female athletes report incidents of miscarriages, liver tumor, gynecological problems and enlarged heart, all showing up decades after the steroid misuse.

“Our society’s current strategy for dealing with the abuse of anabolic steroids in sport primarily involves testing, law enforcement and education,” Yesalis says. “But our efforts to deal with this problem have not been very successful. Unless we deal with the social environment that rewards winning at all costs and an unrealistic physical appearance, we won’t even begin to address the problem.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Vicki Fong
Penn State

By studying the genes of a German child born with unusually well developed muscles, an international research team has discovered the first evidence that the gene whose loss makes “mighty mice” also controls muscle growth in people.

Writing in the June 24 issue of the New England Journal of Medicine, German neurologist Markus Schuelke, M.D., and the team show that the child’s extra-large muscles are due to an inherited mutation that effectively silences the myostatin gene, proving that its protein normally keeps muscle development in check in people.

People with muscle-wasting conditions such as muscular dystrophy, and others just wanting to “bulk up,” have eagerly followed work on myostatin, hoping for a way to counteract the protein’s effects in order to build or rebuild muscle mass. But while research with mice has continued to reveal myostatin’s role and the effects of interfering with it, no one knew whether any of the results would be relevant to humans.

“This is the first evidence that myostatin regulates muscle mass in people as it does in other animals,” says Se-Jin Lee, M.D., Ph.D., professor of molecular biology and genetics in the Institute for Basic Biomedical Sciences at Johns Hopkins and co-author on the study. “That gives us a great deal of hope that agents already known to block myostatin activity in mice may be able to increase muscle mass in humans, too.”

Lee and his team discovered in 1997 that knocking out the myostatin gene led to mice that were twice as muscular as their normal siblings, lending them the moniker “mighty mice.” Later, others showed that naturally bulky cattle, such as Belgian Blues, got their extra muscles from lack of myostatin, too.

An unusual opportunity to examine myostatin’s role in humans arose when Schuelke examined a newborn baby boy, almost five years ago, and was struck by the visible muscles on the infant’s upper legs and upper arms. When ultrasound proved that the muscles were roughly twice as large as other infants’, but otherwise normal, Schuelke realized that a naturally occurring mutation in the child’s myostatin gene might be the cause.

Sequencing the myostatin gene from the boy and his mother, who had been a professional athlete, revealed a single change in the building blocks of the gene’s DNA. Surprisingly, the change was not in the gene regions that correspond to the resulting protein, but in the intervening regions that are used only to create protein-making instructions, thus changing the gene’s protein-building message.

“The mutation caused the gene’s message, the messenger RNA, to be wrong,” says Hopkins

neurologist Kathryn Wagner, M.D., Ph.D., who tested the genetic mutation’s effect in laboratory studies. “If the message had been used to make a protein, it would be much shorter than it should be. But we think the process doesn’t even get that far; instead the cells just destroy the message.”

Co-authors from Wyeth Research, Cambridge, Mass., analyzed samples of the child’s blood for evidence of the myostatin protein and found none. “Both copies of the child’s myostatin gene have this mutation, so little if any of the myostatin protein is made,” says Schuelke. “As a result, he has about twice the muscle mass of other children.”

Completely lacking myostatin, the boy is stronger than other children his age, and fortunately has no signs of problems with his heart so far, Schuelke says. But he adds that it’s impossible to know whether the lack of myostatin in that crucial muscle might lead to problems as the boy gets older.

While other family members — the boy’s mother and her brother, father and grandfather — were also reported to have been usually strong, only the mother’s DNA was available for analysis along with her son’s. Schuelke discovered that only one copy of the mother’s myostatin gene had the mutation found in both copies of her son’s myostatin gene. (We have two copies of each gene; one inherited from the mother and one inherited from the father.)

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

 Contact: Joanna Downer
Johns Hopkins Medical Institutions

 

The Johns Hopkins researchers were funded by the National Institutes of Health and the Muscular Dystrophy Association. The German researchers were funded by the parents’ self-help group (Helft dem muskelkranken Kind).

Authors on the paper are Schuekle, Christoph Hubner, Thomas Riebel and Wolfgang Komen of Charite, University Medical Center Berlin, Germany; Wagner and Lee of Johns Hopkins; Leslie Stolz and James Tobin of Wyeth Research, Cambridge, Ma.; and Thomas Braun of Martin-Luther-University, Halle-Wittenberg, Germany.

*Under a licensing agreement between MetaMorphix Inc. and The Johns Hopkins University, Lee is entitled to a share of royalty received by the University on sales of products described in this article. Lee also is entitled to a share of sublicensing income from arrangements between MetaMorphix and American Home Products (Wyeth Ayerst Laboratories) and Cape Aquaculture Technologies. Lee and the University own MetaMorphix Inc. stock, which is subject to certain restrictions under University policy. Lee owns Cape Aquaculture Technologies stock, which is subject to certain restrictions under University policy. Lee has served as a paid consultant to MetaMorphix Inc. The terms of these arrangements are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

Researchers from the Division of Health Promotion & Sports Medicine at Oregon Health & Science University have found steroid use among teen girls is not limited to athletes and often goes hand in hand with other unhealthy choices, including smoking and taking diet pills. The study was published in the Archives of Pediatrics & Adolescent Medicine, a JAMA/Archives journal.Diane Elliot, M.D., professor of medicine (health promotion and sports medicine), OHSU School of Medicine, and colleagues analyzed findings from the Center for Disease Control’s Youth Risk Behavior Survey of 7,544 ninth- through 12th-grade girls from around the country. The questionnaire asked about sports participation, anabolic steroid and drug use, and other illegal or unhealthy behaviors. Approximately 5 percent of participants reported prior or ongoing anabolic steroid use.

In addition to greater substance use, young female steroid users were more likely to have had sexual intercourse before age 13; have been pregnant; drink and drive or have ridden with a drinking driver; carry a weapon; have been in a fight on school property; have feelings of sadness or hopelessness almost every day for at least two weeks; and have attempted suicide. Those reporting anabolic steroid use were less likely to participate in team athletics.

Overall, more than two-thirds of those surveyed reported trying to change their weight. Girls who used steroids were more likely try extreme weight-loss techniques, such as vomiting and laxative use.

Adolescent girls reporting anabolic steroid use had significantly more other health-harming behaviors, Elliot explained, “They were much more likely to use other unhealthy substances, including cigarettes, alcohol, marijuana and cocaine.”

“Across all grades, these seem to be troubled adolescents with co-occurring health-compromising activities in the domains of substance use, sexual behavior, violence and mental health,” Elliot said. “Anabolic steroid use is a marker for high-risk girls. High-risk young women have received less attention than young men, perhaps reflecting that their actions are less socially, albeit more personally, destructive. Further study is needed to develop effective interventions for these young women.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Tamara Hargens
Oregon Health & Science University