Archive for the ‘Strength’ Category

The University of Manchester is investigating whether increasing the testosterone levels of frail elderly men could improve their strength, energy and mobility.

This is the first study in the world to examine how testosterone treatment may impact this age-group, led by Professor Fred Wu of the Department of Endocrinology at Manchester Royal Infirmary.

Professor Wu said: “Levels of the male hormone testosterone fall by about 1% a year in men over 40, leading to decreases in muscle size and strength, increased body fat and thinner bones. The changes are also associated with decreased sexual interest, fatigue, mobility problems, depression, increased risk of falling and a general sense of weakness.

“Tests on younger and healthy older men suggest that testosterone replacement could help reverse these symptoms in the frail and elderly.”

Professor Wu’s team is expecting to publish the results in two years’ time, and hopes that if the treatment is proven to be effective it may be adopted as standard practice by the NHS.

As well as increasing strength, mobility and quality of life for elderly men, the move could significantly reduce the accident-rate and care requirements of this group and ultimately reduce demands on the NHS and social services.

Men aged 65+ who have lost weight, are easily tired, slow in walking and feel generally weak for no specific reason are being recruited for the study. Only those volunteers found to have low testosterone levels can be included in the trial.

The protocol for participants requires five visits to the Wellcome Trust Clinical Research Facility on Grafton Street at Manchester Royal Infirmary over the 12 month period. They will receive either testosterone or a dummy placebo in the form of a gel self-applied daily to the skin, for the first six months of the trial. Their muscle strength, mobility, bone-strength, muscle and fat content and general quality of life will then be assessed by the research team after both six and 12 months.

The research is being undertaken in partnership with Central Manchester and Manchester Children’s University Hospitals NHS Trust. Participants are free to withdraw from the study at any time, and all information will be collected in the strictest confidence.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jo Nightingale or Rachael McGraw
University of Manchester

NOTES FOR EDITORS

The University of Manchester (www.manchester.ac.uk) was formed by the merger of The Victoria University of Manchester and UMIST in October 2004, and with 36,000 students is the largest higher education institution in the country. Its Faculty of Medical & Human Sciences (www.mhs.manchester.ac.uk) is one of the largest faculties of clinical and health sciences in Europe, with a research income of over £37 million.

The School of Medicine (www.medicine.manchester.ac.uk) is the largest of the Faculty’s five Schools, with 1300 staff, almost 2000 undergraduates and a £32M research income. The School encompasses five teaching hospitals, and is closely linked to a range of general hospitals and community practices across the North West of England.

Advertisements

New study dispels belief that increasing the hormone level improves the sexual function

Bethesda, Md.— The American Journal of Physiology: Endocrinology and Metabolism, one of the 14 peer-reviewed journals published by the American Physiological Society (APS), spotlights recent research findings designed to improve and understand human well-being and health. A study in the December edition examines how different doses of testosterone affect body composition, muscle size, strength, and sexual functions.

Background

Testosterone regulates many physiological processes, including muscle protein metabolism, some aspects of sexual and cognitive functions, secondary sex characteristics, erythropoiesis, plasma lipids, and bone metabolism. However, testosterone dose dependency of various hormonal dependent functions has not been well understood in the scientific community. Previous studies reveal that administration of replacement doses of testosterone to hypogonadal men and of supraphysiological doses to eugonadal men increases fat-free mass, muscle size, and strength. Conversely, suppression of endogenous testosterone concentrations is associated with loss of fat-free mass and a decrease in fractional muscle protein synthesis.

What is not known is whether testosterone effects on the muscle are dose dependent, or the nature of the testosterone dose-response relationships. Animal studies suggest that different androgen-dependent processes have different androgen dose-response relationships. Sexual function in male mammals is maintained at serum testosterone concentrations that are at the lower end of the male range. However, it is not known whether the low normal testosterone levels that normalize sexual function are sufficient to maintain muscle mass and strength, or whether the higher testosterone concentrations required to maintain muscle mass and strength might adversely affect plasma lipids, hemoglobin levels, and the prostate.

The Study

The primary objective of this study was to determine the dose dependency of testosterone’s effects on fat-free mass and muscle performance. The authors hypothesized that changes in circulating testosterone concentrations would be associated with dose-dependent changes in fat-free mass, muscle strength, and power in conformity with a single linear dose-response relationship, and that the dose requirements for maintaining other androgen-dependent processes would be different.

Young men were treated with a long-acting gonadotropin-releasing hormone (GnRH) agonist to suppress endogenous testosterone secretion, and concomitantly also with one of five testosterone-dose regimens to create different levels of serum testosterone concentrations extending from subphysiological to the supraphysiological range. The lowest testosterone dose, 25 mg weekly, was selected because this dose had been shown to maintain sexual function in GnRH antagonist-treated men. The selection of the 600-mg weekly dose was based on the consideration that this was the highest dose that had been safely administered to men in controlled studies.

The authors of the study, “Testosterone Dose-Response Relationships in Healthy Young Men” are Shalender Bhasin, Linda Woodhouse, Connie Dzekov, Jeanne Dzekov, Indrani Sinha-Hikim, Ruoquing Shen, and Atam B. Singh, all from the Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA; Richard Casaburi, Dimple Bhasin, Nancy Berman, Rachelle Bross and Jeffrey Phillips, from the Harbor-University of California Los Angeles Medical Center, Torrance, CA; Xianghong Chen and Kevin E. Yarasheski at the Biomedical Mass Spectrometric Research Resource, Department of Internal Medicine, Washington University, School of Medicine, St. Louis, Missouri, Lynne Magliano and Thomas W. Storer, from the Laboratory for Exercise Sciences, El Camino College, El Camino, CA.

Protocol

This was a double-blind, randomized study consisting of a four-week control period, a 20-week treatment period, and a 16-week recovery period. The participants were healthy men, 18-35 years of age, with prior weight-lifting experience and normal testosterone levels. These men had not used any anabolic agents and had not participated in competitive sports events in the preceding year, and they were not planning to participate in competitive events in the following year. The participants were asked not to undertake strength training or moderate-to-heavy endurance exercise during the study. These instructions were reinforced every four weeks.

Sixty-one eligible men were randomly assigned to one of five groups. All received monthly injections of a long-acting GnRH agonist to suppress endogenous testosterone production. In addition, group 1 received 25 mg of testosterone enanthate intramuscularly weekly; group 2, 50 mg testosterone enanthate; group 3, 125 mg testosterone enanthate; group 4, 300 mg testosterone enanthate; and group 5, 600 mg testosterone enanthate. Twelve men were assigned to group 1, 12 to group 2, 12 to group 3, 12 to group 4, and 13 to group 5.

Nutritional Intake

Energy and protein intakes were standardized at 36 kcal/kg. The standardized diet was initiated two weeks before treatment started; dietary instructions were reinforced every four weeks. The nutritional intake was verified by analysis of three-day food records and 24-hour food recalls every four weeks.

Outcome Measures

Body composition and muscle performance were assessed at baseline and during week 20. Fat-free mass and fat mass were measured by underwater weighing and dual-energy X-ray absorptiometry. Total thigh muscle and quadriceps muscle volumes were measured by MRI scanning.

For estimation of total body water, the men ingested 10 g of 2H2O, and plasma samples were drawn at 0, 120, 180, and 240 min. A measurement of 2H abundance in plasma was made by nuclear magnetic resonance spectroscopy, with a correction factor of 0.985 for exchangeable hydrogen. Another measure of bilateral leg press strength was taken by use of the one-repetition maximum (1-RM) method. A seated leg press exercise with pneumatic resistance was used for this purpose. Subjects performed 5-10 min of leg cycling and stretching warm-up and received instruction and practice in lifting mechanics before performing progressive warm-up lifts leading to the 1-RM. Seat position and the ensuing knee and hip angles, as well as foot placement, were measured and recorded for use in subsequent testing. To ensure reliability in this highly effort-dependent test, the 1-RM score was reassessed within seven days, but not sooner than two days, after the first evaluation. If duplicate scores were within five percent, the higher of the two values was accepted as the strength score. If the two tests differed by greater than five percent, additional studies were conducted.

Sexual function was assessed by daily logs of sexual activity and desire that were maintained for seven consecutive days at baseline and during treatment by use of a published instrument. Spatial cognition was assessed by a computerized checkerboard test and mood by Hamilton’s depression and Young’s mania scales.

Adverse experiences, blood counts and chemistries, prostate-specific antigen (PSA), plasma lipids, total and free testosterone, luteinizing hormone (LH), sex steroid-binding globulin (SHBG), and insulin-like growth factor I (IGF-I) levels were measured periodically during control and treatment periods. Serum total testosterone was measured by an immunoassay.

Results

Of 61 men enrolled, 54 completed the study: 12 in group 1, 8 in group 2, 11 in group 3, 10 in group 4, and 13 in group 5. One man discontinued treatment because of acne; other subjects were unable to meet the demands of the protocol. The five groups did not significantly differ with respect to their baseline characteristics. Key findings included:

– Compliance: All evaluable subjects received 100percent of their GnRH agonist injections, and only one man in the 125-mg group missed one testosterone injection.

– Nutritional intake: Daily energy intake and proportion of calories derived from protein, carbohydrate, and fat were not significantly different among the five groups at baseline. There was no significant change in daily caloric, protein, carbohydrate, or fat intake in any group during treatment.

– Hormone levels: Serum total and free testosterone levels, measured during week 16, one week after the previous injection, were linearly dependent on the testosterone dose (P = 0.0001). Serum total and free testosterone concentrations decreased from baseline in men receiving the 25- and 50-mg doses and increased at 300- and 600-mg doses. Serum LH levels were suppressed in all groups. Serum SHBG levels decreased dose dependently at the 300- and 600-mg doses but did not change in other groups. Serum IGF-I concentrations increased dose dependently at the 300- and 600-mg doses.

– Body composition: Fat-free mass, measured by underwater weighing, did not change significantly in men receiving the 25- or 50-mg testosterone dose, but it increased dose dependently at higher doses. The changes in fat-free mass were highly dependent on testosterone dose (P = 0.0001) and correlated with log total testosterone concentrations during treatment (r = 0.73, P = 0.0001). Fat mass, measured by underwater weighing, increased significantly in men receiving the 25- and 50-mg doses, but did not change in men receiving the higher doses of testosterone. There was an inverse correlation between change in fat mass by underwater weighing and log testosterone concentrations.

– Muscle size: The thigh muscle volume and quadriceps muscle volume did not significantly change in men receiving the 25- or 50-mg doses but increased dose-dependently at higher doses of testosterone. The changes in thigh muscle and quadriceps muscle volumes correlated with log testosterone levels during treatment.

– Muscle performance: The leg press strength did not change significantly in the 25- and 125-mg-dose groups but increased significantly in those receiving the 50-, 300-, and 600-mg doses. Leg power did not change significantly in men receiving the 25-, 50-, and 125-mg doses of testosterone weekly, but it increased significantly in those receiving the 300- and 600-mg doses. The increase in leg power correlated with log testosterone concentrations and changes in fat-free mass and muscle strength.

– Behavioral measures: The scores for sexual activity and sexual desire measured by daily logs did not change significantly at any dose. Similarly, visual-spatial cognition and did not change significantly in any group.

– Adverse experiences and safety measures: Hemoglobin levels decreased significantly in men receiving the 50-mg dose but increased at the 600-mg dose; the changes in hemoglobin were positively correlated with testosterone concentrations. Changes in plasma HDL cholesterol, in contrast, were negatively dependent on testosterone dose and correlated with testosterone concentrations. Total cholesterol, plasma low-density lipoprotein cholesterol, and triglyceride levels did not change significantly at any dose. Serum PSA, creatinine, bilirubin, alanine aminotransferase, and alkaline phosphatase did not change significantly in any group, but aspartate aminotransferase decreased significantly in the 25-mg group. Two men in the 25-mg group, five in the 50-mg group, three in the 125-mg group, seven in the 300-mg group, and two in the 600-mg group developed acne. One man receiving the 50-mg dose reported decreased ability to achieve erections.

Discussion

The researchers found that GnRH agonist administration suppressed endogenous LH and testosterone secretion. Therefore, circulating testosterone concentrations during treatment were proportional to the administered dose of testosterone enanthate. This strategy of combined administration of GnRH agonist and graded doses of testosterone enanthate was effective in establishing different levels of serum testosterone concentrations among the five treatment groups. The different levels of circulating testosterone concentrations created by this regimen were associated with dose- and concentration-dependent changes in fat-free mass, fat mass, thigh and quadriceps muscle volume, muscle strength, leg power, hemoglobin, circulating IGF-I, and plasma HDL cholesterol.

Serum PSA levels, sexual desire and activity, and spatial cognition did not change significantly at any dose. The changes in fat-free mass, muscle volume, leg press strength and power, hemoglobin, and IGF-I were positively correlated, whereas changes in plasma HDL cholesterol and fat mass were negatively correlated with testosterone dose and total and free testosterone concentrations during treatment.

There were no significant changes in overall sexual activity or sexual desire in any group, including those receiving the 25-mg dose. Testosterone replacement of hypogonadal men improves frequency of sexual acts and fantasies, sexual desire, and response to visual erotic stimuli. The data demonstrate that serum testosterone concentrations at the lower end of male range can maintain some aspects of sexual function.

Conclusions

This study demonstrates that an increase in circulating testosterone concentrations results in dose-dependent increases in fat-free mass, muscle size, strength, and power. The relationships between circulating testosterone concentrations and changes in fat-free mass and muscle size conform to a single log-linear dose-response curve. The data do not support the notion of two separate dose-response curves reflecting two independent mechanisms of testosterone action on the muscle.

In addition, the study could not determine if responsiveness to testosterone is attenuated in older men. Testosterone dose-response relationships might be modulated by other muscle growth regulators, such as nutritional status, exercise and activity level, glucocorticoids, thyroid hormones, and endogenous growth hormone secretory status. Serum PSA levels decrease after androgen withdrawal, and testosterone replacement of hypogonadal men increases PSA levels into the normal range.

The data demonstrate that different androgen-dependent body functions respond differently to different testosterone dose-response relationships. Some aspects of sexual function and spatial cognition, and PSA levels, were maintained by relatively low doses of testosterone in GnRH agonist-treated men and did not increase further with administration of higher doses of testosterone. In contrast, graded doses of testosterone were associated with dose and testosterone concentration-dependent changes in fat-free mass, fat mass, muscle volume, leg press strength and power, hemoglobin, IGF-I, and plasma HDL cholesterol.

Testosterone doses associated with significant gains in fat-free mass, muscle size, and strength were associated with significant reductions in plasma HDL concentrations. Further studies are needed to determine whether clinically significant anabolic effects of testosterone can be achieved without adversely affecting cardiovascular risk. Selective androgen receptor modulators that preferentially augment muscle mass and strength, but only minimally affect prostate and cardiovascular risk factors, are desirable.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Donna Krupa
American Physiological Society

Source: American Journal of Physiology: Endocrinology and Metabolism, December 2001

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Experts at The University of Nottingham are to investigate the effect of nutrients on muscle maintenance in the hope of determining better ways of keeping up our strength as we get old.

The researchers, based at the School of Graduate Entry Medicine and Health in Derby, want to know what sort of exercise we can take and what food we should eat to slow down the natural loss of skeletal muscle with ageing.

The team from the Department of Clinical Physiology, which has over 20 years experience in carrying out this type of metabolic study, need to recruit 16 healthy male volunteers in two specific age groups to help in it’s research.

Skeletal muscles make up about half of our body weight and are responsible for controlling movement and maintaining posture. However, at around 50 years of age our muscles begin to waste at approximately 0.5 per cent to one per cent a year. It means that an 80 year old may only have 70 per cent of the muscle of a 50 year old.

Since the strength of skeletal muscle is proportional to muscle size, such wasting makes it harder to carry out daily activities requiring strength, such as climbing stairs and leads to a loss of independence and an increased risk of falls and fractures.

In order for skeletal muscles to maintain their size, the large reservoirs of muscle protein require constant replenishment in the way of amino acids from protein contained within the food we eat. In fact, amino acids from our food act not only as the building blocks of muscle proteins but also actually ‘tell’ our muscle cells to build proteins.

Recent research from the clinical physiology team has shown that the cause of muscle wasting with ageing appears to be an attenuation of muscle building in response to protein feeding. In other words, as we age we lose the ability to covert the protein in the food we eat in to muscle tissue. The proposed research will investigate the mechanisms responsible for this deficit.

Dr Philip Atherton, who is currently recruiting volunteers, said: “I am really excited to be involved in this project because if we can determine ways to better maintain muscle mass as we age it will greatly benefit us all.”

The researchers are looking for 16 healthy, non-smoking, male volunteers aged 18 to 25 and 65 to 75.

Initially, the volunteers will undergo a health screening and then on a different day, under the supervision of a doctor, will be infused with an amino acid mixture to simulate feeding along with a ‘tagged’ amino acid that allows them to assess muscle building. To make these measures, blood samples will be taken from the arm and muscle biopsies from the thigh muscle under local anaesthesia. Volunteers will receive an honorarium to cover their expenses.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Lindsay Brooke
University of Nottingham

 

The study will take place at The University of Nottingham’s Medical School which based at the City Hospital in Derby.

Investigators in The Research Institute at Nationwide Children’s Hospital have identified the role of a protein that could potentially lead to new clinical treatments to combat musculoskeletal diseases, including Duchenne muscular dystrophy (DMD).

Results of these studies appear in the March 11, 2008 issue of the Proceedings of the National Academy of Sciences.

These studies, led by Brian Kaspar, PhD, a principal investigator in the Center for Gene Therapy at The Research Institute and an assistant professor of Pediatrics at The Ohio State University, focus on a protein called follistatin (FS). Using a single injection, gene-delivery strategy involving FS, investigators treated the hind leg muscles of mice. Results showed increased muscle size and strength, quadruple that of mice treated with proteins other than FS. The muscle enhancements were shown to be well-tolerated for more than two years.

According to Dr. Kaspar, increased muscle mass and strength were also evident when this strategy was tested using a model of DMD. Apart from the injected hind leg muscles, strengthening effects were also shown in the triceps. In addition, fibrosis, abnormal formation of scar tissue and a hallmark of muscular dystrophy, was decreased in FS-treated animals.

“We believe this new FS strategy may be more powerful than other strategies due to its additional effects, including its ability to reduce inflammation,” said Dr. Kaspar.

The strategy showed no negative effects on the heart or reproductive ability of either males or females. The results were also replicated in older animals, suggesting that this strategy could be useful in developing clinical treatments for older DMD patients.

“This research provides evidence of multiple potential treatment applications for muscle diseases including, but not limited to, muscular dystrophy,” said Jerry Mendell, MD, director of the Center for Gene Therapy at The Research Institute, a co-author on the study, and professor of Pediatrics in Neurology and Pathology at The Ohio State University. “These results offer promise for treatment of potentially any muscle-wasting disease, including muscle weakness due to other illnesses, aging, and inflammatory diseases such as polymyositis. Our next step is to pursue clinical trials.”

The Research Institute at Nationwide Children’s Hospital has a patent pending on the FS technique due to the major role it may play for muscular dystrophy treatment and other muscle-wasting diseases.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Pam Barber/Mary Ellen Fiorino
Nationwide Children’s Hospital

USC study finds combining resistance training and androgens gives more muscular bang for the buck

PHILADELPHIA (June 19, 2003)-Men who take supplemental androgens-the male hormone testosterone or similar medications-increase their strength by adding muscle mass, but androgens alone do not pack more might into the muscles, according to studies presented today by University of Southern California researchers.

Treatment with androgens increases lean body mass-which encompasses everything in the body but bone and fat-and strength increases proportionately with the amount of muscle added, says E. Todd Schroeder, Ph.D., postdoctoral fellow in the Department of Medicine at the Keck School of Medicine of USC and adjunct assistant professor in the USC Department of Biokinesiology and Physical Therapy. Schroeder presented his findings at the Endocrine Society’s 85th Annual Meeting.

However, when men use androgen therapy combined with resistance training, such as weightlifting, their gains in strength may far outpace the amount of muscle that can be added with androgens alone. Each muscle cell packs a bigger punch, a concept known as improved muscle quality.

“The results of androgen therapy alone on muscle and strength are not necessarily bad, but they are not optimal,” Schroeder says. “The men did improve their strength, but it was proportional to the muscle mass they added.”

The findings wield health implications beyond the stereotypes of muscle-bound bodybuilders. Schroeder and his colleagues are studying the usefulness of androgens and exercise in helping maintain muscle strength, muscle power and physical function among seniors, for example. They also have studied androgen therapy’s effectiveness in battling wasting among HIV-positive patients.

In their recent study, Schroeder and USC colleagues Michael Terk, M.D., and Fred R. Sattler, M.D., looked at both young men and seniors. They followed two groups: 33 seniors ranging from their mid-60s to late 70s, and 23 HIV-positive men ranging from their early 30s to late 40s.

The younger men were randomly assigned to get 600 milligrams (mg) each week of nandrolone alone or in combination with resistance training. The older men were randomly assigned to receive 20 mg a day of oxandrolone or a placebo. These pharmacologic androgen doses were given over 12 weeks.

Researchers determined maximal strength-the most weight a participant could safely lift or push-using leg press, leg extension and leg flexion machines.

The researchers also measured the cross-sectional area of participants’ thighs and the lean body mass of their lower extremities by magnetic resonance imaging, or MRI. They then determined the strength that participants exerted for each unit of muscle (muscle quality) and how muscle quality changed over time.

Androgens alone increased lean body mass and maximum strength in both groups of men, but “gains were modest,” Schroeder says, and muscle quality did not change, since the muscle size and strength both increased proportionately. However, among those using nandrolone and undergoing resistance training, muscle quality improved significantly: Gains in strength were much greater than the gains that could occur from muscle-mass increase alone.

“It is clear from our studies and others that resistance training is critical for increasing muscle quality, but the effects can probably be augmented with androgens,” Schroeder says. “In addition, not everyone can do resistance training, and a short course of androgens can help get people stronger and more functional.”

Finally, results provide researchers insight into how to better design future studies to test strategies to best preserve and even improve muscle strength and physical function among seniors. Similar studies will be important for other types of patients who experience muscle loss and frailty, such as those with cancer, chronic lung disease, chronic renal failure and other conditions.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jon Weiner
University of Southern California

Grants by the National Institute of Diabetes & Digestive & Kidney Diseases and the National Center for Research Resources (General Clinical Research Center) supported the research. Bio Technology General Corp., which makes Oxandrin (oxandrolone), also supported part of the research.

Edward T. Schroeder, Michael Terk and Fred R. Sattler, “Pharmacological Doses of Androgen Do Not Improve Muscle Quality in Young or Older Men: Results from Two Studies,” Endocrine Society’s 85th Annual Meeting, poster P3-212, presentation 11 a.m., June 21. Findings released at news conference 1:30 p.m., June 19.

It’s an inevitable truth: as we get older, our muscles deteriorate and we become weaker. Not only can this be an immensely frustrating change, but it can also have many other, more serious implications. We become clumsier and begin to have more falls, often resulting in broken bones or even more severe injuries. There is wide interest in this phenomenon, but to date, the majority of research has focussed on therapies for older patients with advanced symptoms. Now one study, led by Dr Alexandra Sänger from the University of Salzburg, is taking a new approach: scientists are examining the effects of different exercise regimes in menopausal women, with the aim of developing new strategies for delaying and reducing the initial onset of age related muscle deterioration. Results will be presented on Monday 7th July at the Society for Experimental Biology’s Annual Meeting in Marseille [Poster Session A5].

Dr Sänger’s research group has investigated two particular methods of physical training. Hypertrophy resistance training is a traditional approach designed to induce muscle growth whereas ‘SuperSlow®’ is a more recently devised system which involves much slower movement and fewer repetitions of exercises, and was originally introduced especially for beginners and for rehabilitation. “Our results indicate that both methods increase muscle mass at the expense of connective and fatty tissue, but contrary to expectations, the SuperSlow® method appears to have the greatest effect,” reveals Dr Sänger. “These findings will be used to design specific exercise programmes for everyday use to reduce the risk of injury and thus significantly contribute to a better quality of life in old age.”

The study focussed on groups of menopausal women aged 45-55 years, the age group in which muscle deterioration first starts to become apparent. Groups undertook supervised regimes over 12 weeks, based on each of the training methods. To see what effect the exercise had, thigh muscle biopsies were taken at the beginning and end of the regimes, and microscopically analysed to look for changes in the ratio of muscle to fatty and connective tissue, the blood supply to the muscle, and particularly for differences in the muscle cells themselves. “The results of our experiments have significantly improved our understanding of how muscles respond to different forms of exercise,” asserts Dr Sänger. “We believe that the changes that this new insight can bring to current training systems will have a considerable effect on the lives of both menopausal and older

———————————–
Article adapted by MD Sports from original press release.
———————————–

Notes to editors

  • Hypertrophy resistance training is a method of strength training that is designed to induce muscle growth, also known as hypertrophy.
  • SuperSlow® resistance training was developed by Ken Hutchins and is based on the same principle as hypertrophy resistance training, but involves slower movement and fewer repetitions of exercises, which is thought to improve the quality of muscle contraction and thereby strength.

Contact: Holly Astley
Society for Experimental Biology

By studying the genes of a German child born with unusually well developed muscles, an international research team has discovered the first evidence that the gene whose loss makes “mighty mice” also controls muscle growth in people.

Writing in the June 24 issue of the New England Journal of Medicine, German neurologist Markus Schuelke, M.D., and the team show that the child’s extra-large muscles are due to an inherited mutation that effectively silences the myostatin gene, proving that its protein normally keeps muscle development in check in people.

People with muscle-wasting conditions such as muscular dystrophy, and others just wanting to “bulk up,” have eagerly followed work on myostatin, hoping for a way to counteract the protein’s effects in order to build or rebuild muscle mass. But while research with mice has continued to reveal myostatin’s role and the effects of interfering with it, no one knew whether any of the results would be relevant to humans.

“This is the first evidence that myostatin regulates muscle mass in people as it does in other animals,” says Se-Jin Lee, M.D., Ph.D., professor of molecular biology and genetics in the Institute for Basic Biomedical Sciences at Johns Hopkins and co-author on the study. “That gives us a great deal of hope that agents already known to block myostatin activity in mice may be able to increase muscle mass in humans, too.”

Lee and his team discovered in 1997 that knocking out the myostatin gene led to mice that were twice as muscular as their normal siblings, lending them the moniker “mighty mice.” Later, others showed that naturally bulky cattle, such as Belgian Blues, got their extra muscles from lack of myostatin, too.

An unusual opportunity to examine myostatin’s role in humans arose when Schuelke examined a newborn baby boy, almost five years ago, and was struck by the visible muscles on the infant’s upper legs and upper arms. When ultrasound proved that the muscles were roughly twice as large as other infants’, but otherwise normal, Schuelke realized that a naturally occurring mutation in the child’s myostatin gene might be the cause.

Sequencing the myostatin gene from the boy and his mother, who had been a professional athlete, revealed a single change in the building blocks of the gene’s DNA. Surprisingly, the change was not in the gene regions that correspond to the resulting protein, but in the intervening regions that are used only to create protein-making instructions, thus changing the gene’s protein-building message.

“The mutation caused the gene’s message, the messenger RNA, to be wrong,” says Hopkins

neurologist Kathryn Wagner, M.D., Ph.D., who tested the genetic mutation’s effect in laboratory studies. “If the message had been used to make a protein, it would be much shorter than it should be. But we think the process doesn’t even get that far; instead the cells just destroy the message.”

Co-authors from Wyeth Research, Cambridge, Mass., analyzed samples of the child’s blood for evidence of the myostatin protein and found none. “Both copies of the child’s myostatin gene have this mutation, so little if any of the myostatin protein is made,” says Schuelke. “As a result, he has about twice the muscle mass of other children.”

Completely lacking myostatin, the boy is stronger than other children his age, and fortunately has no signs of problems with his heart so far, Schuelke says. But he adds that it’s impossible to know whether the lack of myostatin in that crucial muscle might lead to problems as the boy gets older.

While other family members — the boy’s mother and her brother, father and grandfather — were also reported to have been usually strong, only the mother’s DNA was available for analysis along with her son’s. Schuelke discovered that only one copy of the mother’s myostatin gene had the mutation found in both copies of her son’s myostatin gene. (We have two copies of each gene; one inherited from the mother and one inherited from the father.)

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

 Contact: Joanna Downer
Johns Hopkins Medical Institutions

 

The Johns Hopkins researchers were funded by the National Institutes of Health and the Muscular Dystrophy Association. The German researchers were funded by the parents’ self-help group (Helft dem muskelkranken Kind).

Authors on the paper are Schuekle, Christoph Hubner, Thomas Riebel and Wolfgang Komen of Charite, University Medical Center Berlin, Germany; Wagner and Lee of Johns Hopkins; Leslie Stolz and James Tobin of Wyeth Research, Cambridge, Ma.; and Thomas Braun of Martin-Luther-University, Halle-Wittenberg, Germany.

*Under a licensing agreement between MetaMorphix Inc. and The Johns Hopkins University, Lee is entitled to a share of royalty received by the University on sales of products described in this article. Lee also is entitled to a share of sublicensing income from arrangements between MetaMorphix and American Home Products (Wyeth Ayerst Laboratories) and Cape Aquaculture Technologies. Lee and the University own MetaMorphix Inc. stock, which is subject to certain restrictions under University policy. Lee owns Cape Aquaculture Technologies stock, which is subject to certain restrictions under University policy. Lee has served as a paid consultant to MetaMorphix Inc. The terms of these arrangements are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.