Archive for the ‘Runners High’ Category

Boosting an exercise-related gene in the brain works as a powerful anti-depressant in mice—a finding that could lead to a new anti-depressant drug target, according to a Yale School of Medicine report in Nature Medicine.

“The VGF exercise-related gene and target for drug development could be even better than chemical antidepressants because it is already present in the brain,” said Ronald Duman, professor of psychiatry and senior author of the study.

Depression affects 16 percent of the population in the United States, at a related cost of $83 billion each year. Currently available anti-depressants help 65 percent of patients and require weeks to months before the patients experience relief.

Duman said it is known that exercise improves brain function and mental health, and provides protective benefits in the event of a brain injury or disease, but how this all happens in the brain is not well understood. He said the fact that existing medications take so long to work indicates that some neuronal adaptation or plasticity is needed.

He and his colleagues designed a custom microarray that was optimized to show small changes in gene expression, particularly in the brain’s hippocampus, a limbic structure highly sensitive to stress hormones, depression, and anti-depressants.

They then compared the brain activity of sedentary mice to those who were given running wheels. The researchers observed that the mice with wheels within one week were running more than six miles each night. Four independent array analyses of the mice turned up 33 hippocampal exercise-regulated genes—27 of which had never been identified before.

The action of one gene in particular—VGF—was greatly enhanced by exercise. Moreover, administering VGF functioned like a powerful anti-depressant, while blocking VGF inhibited the effects of exercise and induced depressive-like behavior in the mice.

“Identification of VGF provides a mechanism by which exercise produces antidepressant effects,” Duman said. “This information further supports the benefits of exercise and provides a novel target for the development of new antidepressants with a completely different mechanism of action than existing medications.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Jacqueline Weaver
Yale University
Nature Medicine

Endorphins and other morphine-like substances known as opioids, which are released during exercise, don’t just make you feel good — they may also protect you from heart attacks, according to University of Iowa researchers.

It has long been known that the so-called “runner’s high” is caused by natural opioids that are released during exercise. However, a UI study, which is published in the online edition of the American Journal of Physiology’s Heart and Circulatory Physiology, suggests that these opioids may also be responsible for some of exercise’s cardiovascular benefits.

Working with rats, UI researchers showed that blocking the receptors that bind morphine, endorphins and other opioids eliminates the cardiovascular benefits of exercise. Moreover, the UI team showed that exercise was associated with increased expression of several genes involved in opioid pathways that appear to be critical in protecting the heart.

“This is the first evidence linking the natural opioids produced during exercise to the cardio-protective effects of exercise,” said Eric Dickson, M.D., UI associate professor and head of emergency medicine in the Roy J. and Lucille A. Carver College of Medicine and the study’s lead investigator. “We have known for a long time that exercise is great for the heart. This study helps us better understand why.”

Studies have shown that regular vigorous exercise reduces the risk of having a heart attack and improves survival rates following heart attack, even in people with cardiovascular disease. In addition, exercise also decreases the risk of atherosclerosis, stroke, osteoporosis and even depression. However, despite these proven health benefits, much less is understood about how exercise produces these benefits.

The UI study investigated the idea that the opioids produced by exercise might have a direct role in cardio-protection. The researchers compared rats that exercised with rats that did not. As expected, exercised rats sustained significantly less heart damage from a heart attack than non-exercised rats. The researchers then showed that blocking opioid receptors completely eliminated these cardio-protective effects in exercising rats, suggesting that opioids are responsible for some of the cardiac benefits of exercise.

The UI team also showed that exercise was associated with transient increases in expression of several opioid system genes in heart muscle, and changes in expression of other genes that are involved in inflammation and cell death. The researchers plan to investigate whether these altered gene expression patterns reveal specific cardio-protective pathways.

A better understanding of how exercise protects the heart may eventually allow scientists to harness these protective effects for patients with decreased mobility.

“Hopefully this study will move us closer to developing therapies that mimic the benefits of exercise,” Dickson said. “It also serves as a reminder of how important it is to get out and exercise every day.”

—————————-
Article adapted by MD Only Weblog from original press release.
—————————-

Contact: Jennifer Brown
University of Iowa

In addition to Dickson, the UI research team included Christopher Hogrefe, Paula Ludwig, Laynez Ackermann, Lynn Stoll, Ph.D., and Gerene Denning, Ph.D.

STORY SOURCE: University of Iowa Health Science Relations, 5135, Westlawn, Iowa City, Iowa 52242-1178

ORIGINAL ARTICLE: Abstract is available Click here