Archive for the ‘Wrestling’ Category

Researchers at The University of Auckland have shown for the first time that the mere presence of carbohydrate solution in the mouth immediately boosts muscle strength, even before it is swallowed.

The results suggest that a previously unknown neural pathway is activated when receptors in the mouth detect carbohydrate, stimulating parts of the brain that control muscle activity and producing an increase in muscle strength.

Previous research had shown that the presence of carbohydrate in the mouth can improve physical performance during prolonged activity, but the mechanism involved was not known and it was unclear whether a person must be fatigued for the effect to be seen.

“There appears to be a pathway in the brain that tells our muscles when energy is on the way,” says lead researcher Dr Nicholas Gant from the Department of Sport and Exercise Science.

“We have shown that carbohydrate in the mouth produces an immediate increase in neural drive to both fresh and fatigued muscle and that the size of the effect is unrelated to the amount of glucose in the blood or the extent of fatigue.”

The current research has been published in the journal Brain Research and has also captured the attention of New Scientist magazine.

In the first of two experiments, 16 healthy young men who had been doing biceps exercises for 11 minutes were given a carbohydrate solution to drink or an identically flavored energy-free placebo. Their biceps strength was measured before and immediately afterward, as was the activity of the brain pathway known to supply the biceps.

Around one second after swallowing the drink, neural activity increased by 30 percent and muscle strength two percent, with the effect lasting for around three minutes. The response was not related to the amount of glucose in the bloodstream or how fatigued the participants were.

“It might not sound like much, but a two percent increase in muscle strength is enormous, especially at the elite level. It’s the difference between winning an Olympic medal or not,” says co-author Dr Cathy Stinear.

As might be expected, a second boost in muscle strength was observed after 10 minutes when carbohydrate reached the bloodstream and muscles through digestion, but no additional boost in neural activity was seen at that time.

“Two quite distinct mechanisms are involved,” says Dr Stinear. “The first is the signal from the mouth via the brain that energy is about to be available and the second is when the carbohydrate actually reaches the muscles and provides that energy,” says Dr Stinear.

“The carbohydrate and placebo solutions used in the experiment were of identical flavor and sweetness, confirming that receptors in the mouth can process other sensory information aside from the basic taste qualities of food. The results suggest that detecting energy may be a sixth taste sense in humans,” says Dr Gant.

In the second experiment, 17 participants who had not been doing exercise and were not fatigued simply held one of the solutions in their mouths without swallowing. Measurements of the muscle between the thumb and index finger were taken while the muscle was either relaxed or active.

A similar, though smaller effect was observed as in the first experiment, with a nine percent increase in neural activity produced by the carbohydrate solution compared with placebo. This showed that the response is seen in both large powerful muscles and in smaller muscles responsible for fine hand movements.

“Together the results show that carbohydrate in the mouth activates the neural pathway whether or not muscles are fatigued. We were surprised by this, because we had expected that the response would be part of the brain’s sophisticated system for monitoring energy levels during exercise,” says Dr Stinear.

“Seeing the same effect in fresh muscle suggests that it’s more of a simple reflex – part of our basic wiring – and it appears that very ancient parts of the brain such as the brainstem are involved. Reflexive movements in response to touch, vision and hearing are well known but this is the first time that a reflex linking taste and muscle activity has been described,” she says.

Further research is required to determine the precise mechanisms involved and to learn more about the size of the effect on fresh versus fatigued muscle.

———————————–

Article adapted by MD Sports from original press release.
———————————–
Contact: Pauline Curtis
The University of Auckland

Researchers at The University of Auckland have shown for the first time that the mere presence of carbohydrate solution in the mouth immediately boosts muscle strength, even before it is swallowed.

The results suggest that a previously unknown neural pathway is activated when receptors in the mouth detect carbohydrate, stimulating parts of the brain that control muscle activity and producing an increase in muscle strength.

Previous research had shown that the presence of carbohydrate in the mouth can improve physical performance during prolonged activity, but the mechanism involved was not known and it was unclear whether a person must be fatigued for the effect to be seen.

“There appears to be a pathway in the brain that tells our muscles when energy is on the way,” says lead researcher Dr Nicholas Gant from the Department of Sport and Exercise Science.

“We have shown that carbohydrate in the mouth produces an immediate increase in neural drive to both fresh and fatigued muscle and that the size of the effect is unrelated to the amount of glucose in the blood or the extent of fatigue.”

The current research has been published in the journal Brain Research and has also captured the attention of New Scientist magazine.

In the first of two experiments, 16 healthy young men who had been doing biceps exercises for 11 minutes were given a carbohydrate solution to drink or an identically flavored energy-free placebo. Their biceps strength was measured before and immediately afterward, as was the activity of the brain pathway known to supply the biceps.

Around one second after swallowing the drink, neural activity increased by 30 percent and muscle strength two percent, with the effect lasting for around three minutes. The response was not related to the amount of glucose in the bloodstream or how fatigued the participants were.

“It might not sound like much, but a two percent increase in muscle strength is enormous, especially at the elite level. It’s the difference between winning an Olympic medal or not,” says co-author Dr Cathy Stinear.

As might be expected, a second boost in muscle strength was observed after 10 minutes when carbohydrate reached the bloodstream and muscles through digestion, but no additional boost in neural activity was seen at that time.

“Two quite distinct mechanisms are involved,” says Dr Stinear. “The first is the signal from the mouth via the brain that energy is about to be available and the second is when the carbohydrate actually reaches the muscles and provides that energy,” says Dr Stinear.

“The carbohydrate and placebo solutions used in the experiment were of identical flavor and sweetness, confirming that receptors in the mouth can process other sensory information aside from the basic taste qualities of food. The results suggest that detecting energy may be a sixth taste sense in humans,” says Dr Gant.

In the second experiment, 17 participants who had not been doing exercise and were not fatigued simply held one of the solutions in their mouths without swallowing. Measurements of the muscle between the thumb and index finger were taken while the muscle was either relaxed or active.

A similar, though smaller effect was observed as in the first experiment, with a nine percent increase in neural activity produced by the carbohydrate solution compared with placebo. This showed that the response is seen in both large powerful muscles and in smaller muscles responsible for fine hand movements.

“Together the results show that carbohydrate in the mouth activates the neural pathway whether or not muscles are fatigued. We were surprised by this, because we had expected that the response would be part of the brain’s sophisticated system for monitoring energy levels during exercise,” says Dr Stinear.

“Seeing the same effect in fresh muscle suggests that it’s more of a simple reflex – part of our basic wiring – and it appears that very ancient parts of the brain such as the brainstem are involved. Reflexive movements in response to touch, vision and hearing are well known but this is the first time that a reflex linking taste and muscle activity has been described,” she says.

Further research is required to determine the precise mechanisms involved and to learn more about the size of the effect on fresh versus fatigued muscle.

———————————–

Article adapted by MD Sports from original press release.
———————————–
Contact: Pauline Curtis
The University of Auckland

WESTCHESTER, Ill. – Athletes who get an extra amount of sleep are more likely to improve their performance in a game, according to a research abstract presented at the 21st Annual Meeting of the Associated Professional Sleep Societies (APSS).

The study, authored by Cheri Mah of Stanford University, was conducted on six healthy students on the Stanford men’s basketball team, who maintained their typical sleep-wake patterns for a two-week baseline followed by an extended sleep period in which they obtained as much extra sleep as possible. To assess improvements in athletic performance, the students were judged based on their sprint time and shooting percentages.

Significant improvements in athletic performance were observed, including faster sprint time and increased free-throws. Athletes also reported increased energy and improved mood during practices and games, as well as a decreased level of fatigue.

“Although much research has established the detrimental effects of sleep deprivation on cognitive function, mood and performance, relatively little research has investigated the effects of extra sleep over multiple nights on these variables, and even less on the specific relationship between extra sleep and athletic performance. This study illuminated this latter relationship and showed that obtaining extra sleep was associated with improvements in indicators of athletic performance and mood among members of the men’s basketball team.”

The amount of sleep a person gets affects his or her physical health, emotional well-being, mental abilities, productivity and performance. Recent studies associate lack of sleep with serious health problems such as an increased risk of depression, obesity, cardiovascular disease and diabetes.
———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jim Arcuri
American Academy of Sleep Medicine 

Experts recommend that adults get between seven and eight hours of sleep each night to maintain good health and optimum performance.

Persons who think they might be suffering from a sleep disorder are encouraged to consult with their primary care physician, who will refer them to a sleep specialist.

The annual SLEEP meeting brings together an international body of 5,000 leading researchers and clinicians in the field of sleep medicine to present and discuss new findings and medical developments related to sleep and sleep disorders.

More than 1,000 research abstracts will be presented at the SLEEP meeting, a joint venture of the American Academy of Sleep Medicine and the Sleep Research Society. The four-day scientific meeting will bring to light new findings that enhance the understanding of the processes of sleep and aid the diagnosis and treatment of sleep disorders such as insomnia, narcolepsy and sleep apnea.

Recipe to recover more quickly from exercise: Finish workout, eat pasta, and wash down with five or six cups of strong coffee.

Glycogen, the muscle’s primary fuel source during exercise, is replenished more rapidly when athletes ingest both carbohydrate and caffeine following exhaustive exercise, new research from the online edition of the Journal of Applied Physiology shows. Athletes who ingested caffeine with carbohydrate had 66% more glycogen in their muscles four hours after finishing intense, glycogen-depleting exercise, compared to when they consumed carbohydrate alone, according to the study, published by The American Physiological Society.

The study, “High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is co-ingested with caffeine,” is by David J. Pedersen, Sarah J. Lessard, Vernon G. Coffey, Emmanuel G. Churchley, Andrew M. Wootton, They Ng, Matthew J. Watt and John A. Hawley. Dr. Pedersen is with the Garvan Institute of Medical Research in Sydney, Australia, Dr. Watt is from St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia. All others are with the Royal Melbourne Institute of Technology University (RMIT) in Bundoora, Victoria, Australia.

A fuller audio interview with Dr. Hawley is available in Episode 11 of the APS podcast, Life Lines, at www.lifelines.tv. The show also includes an interview with Dr. Stanley Schultz, whose physiological discovery of how sugar is transported in the gut led to the development of oral rehydration therapy and sports drinks such as Gatorade and Hi-5.

Caffeine aids carbohydrate uptake  

It is already established that consuming carbohydrate and caffeine prior to and during exercise improves a variety of athletic performances. This is the first study to show that caffeine combined with carbohydrates following exercise can help refuel the muscle faster.

“If you have 66% more fuel for the next day’s training or competition, there is absolutely no question you will go farther or faster,” said Dr. Hawley, the study’s senior author. Caffeine is present in common foods and beverages, including coffee, tea, chocolate and cola drinks.

The study was conducted on seven well-trained endurance cyclists who participated in four sessions. The participants first rode a cycle ergometer until exhaustion, and then consumed a low-carbohydrate dinner before going home. This exercise bout was designed to reduce the athletes’ muscle glycogen stores prior to the experimental trial the next day.

The athletes did not eat again until they returned to the lab the next day for the second session when they again cycled until exhaustion. They then ingested a drink that contained carbohydrate alone or carbohydrate plus caffeine and rested in the laboratory for four hours. During this post-exercise rest time, the researchers took several muscle biopsies and multiple blood samples to measure the amount of glycogen being replenished in the muscle, along with the concentrations of glucose-regulating metabolites and hormones in the blood, including glucose and insulin.

The entire two-session process was repeated 7-10 days later. The only difference was that this time, the athletes drank the beverage that they had not consumed in the previous trial. (That is, if they drank the carbohydrate alone in the first trial, they drank the carbohydrate plus caffeine in the second trial, and vice versa.)

The drinks looked, smelled and tasted the same and both contained the same amount of carbohydrate. Neither the researchers nor the cyclists knew which regimen they were receiving, making it a double-blind, placebo-controlled experiment.

Glucose and insulin levels higher with caffeine ingestion
The researchers found the following:  
  • one hour after exercise, muscle glycogen levels had replenished to the same extent whether or not the athlete had the drink containing carbohydrate and caffeine or carbohydrate only
  • four hours after exercise, the drink containing caffeine resulted in 66% higher glycogen levels compared to the carbohydrate-only drink
  • throughout the four-hour recovery period, the caffeinated drink resulted in higher levels of blood glucose and plasma insulin
  • several signaling proteins believed to play a role in glucose transport into the muscle were elevated to a greater extent after the athletes ingested the carbohydrate-plus-caffeine drink, compared to the carbohydrate-only drink

 Dr. Hawley said it is not yet clear how caffeine aids in facilitating glucose uptake from the blood into the muscles. However, the higher circulating blood glucose and plasma insulin levels were likely to be a factor. In addition, caffeine may increase the activity of several signaling enzymes, including the calcium-dependent protein kinase and protein kinase B (also called Akt), which have roles in muscle glucose uptake during and after exercise.

Lower dose is next step  

In this study, the researchers used a high dose of caffeine to establish that it could help the muscles convert ingested carbohydrates to glycogen more rapidly. However, because caffeine can have potentially negative effects, such as disturbing sleep or causing jitteriness, the next step is to determine whether smaller doses could accomplish the same goal.

Hawley pointed out that the responses to caffeine ingestion vary widely between individuals. Indeed, while several of the athletes in the study said they had a difficult time sleeping the night after the trial in which they ingested caffeine (8 mg per kilogram of body weight, the equivalent of drinking 5-6 cups of strong coffee), several others fell asleep during the recovery period and reported no adverse effects.

Athletes who want to incorporate caffeine into their workouts should experiment during training sessions well in advance of an important competition to find out what works for them.

 —————————-
Article adapted by MD Sports from original press release.
—————————-

Contact: Christine Guilfoy
American Physiological Society

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS) has been an integral part of this scientific discovery process since it was established in 1887.

Energy bars, touted for improving athletic performance while providing the right combination of essential nutrients, may not always give endurance athletes the boost they expect.An Ohio State University researcher compared two popular energy bars and found that one of the bars didn’t give the moderate increase in blood sugar known to enhance performance in endurance athletes. Instead, its effect was much like a candy bar – giving a big rush of sugar to the blood, followed by a sharp decline.

“Theoretically, energy bars produce more moderate increases and decreases in blood sugar levels than a typical candy bar,” said Steve Hertzler, an associate professor of medical dietetics at Ohio State. “But these claims aren’t necessarily valid.” His study appears in a recent issue of the Journal of the American Dietetic Association.

Hertzler wanted to know how energy bars affected blood glucose levels. Glucose is a sugar that provides energy to the body’s cells – for example, red-blood cells and most parts of the brain derive most of their energy from glucose.

“Athletes – especially those involved in endurance sports – want to enhance performance, and energy bars claim to help keep blood sugar levels at a moderate level,” Hertzler said.

Volunteers had to fast for at least 12 hours before taking part in each of four experiments. Then, they ate one of four experimental “meals” consisting of either four slices of white bread; a Snickers bar; an Ironman PR Bar; or a PowerBar. Each experimental meal provided the same amount of carbohydrates (50 grams.)

Hertzler then tested the effects these foods had on blood glucose levels at 15-minute intervals for up to two hours after each experimental meal. The volunteers had to wait at least 24 hours between each experimental meal.

Hertzler measured each subject’s blood samples for glucose levels, to determine which food most raised blood sugar levels.

Both energy bars caused blood glucose levels to peak at 30 minutes, while levels peaked at 45 minutes after the bread and candy bar were consumed. Blood glucose levels declined steadily throughout the duration of testing for all foods but the Ironman PR Bar. This bar caused blood glucose rates to remain fairly steady, probably because of the moderate carbohydrate level of the bar, according to Hertzler.

“Though blood glucose rates peaked at 30 minutes with both bars, the high-carbohydrate energy bar – the PowerBar – caused a much sharper decline,” Hertzler said. “In fact, the decline was sharper than with the candy bar.” Much of the energy derived from the bread and the candy bar came from carbohydrate and the same was true for the PowerBar. While the bar is low in protein and fat, more than 70 percent of it is made up of carbohydrate (such as high-fructose corn syrup; oat bran; and brown rice). In contrast, 40 percent of the Ironman PR is comprised of carbohydrate (high fructose corn syrup and fructose.) The rest of the bar was comprised of 30 percent fat and 30 percent protein.

“The composition of this bar may have been responsible for the diminished blood glucose response,” Hertzler said. “Athletes involved in short-duration events who want a quick energy boost should eat a high-carbohydrate energy bar or a candy bar,” he suggests. “However, endurance athletes would do well to consume an energy bar with a moderate carbohydrate level.”

Hertzler conducted this study while at Kent State University in Kent, Ohio. He is continuing similar research at Ohio State.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Steve Hertzler
Ohio State University

Editor’s note: This research was funded by a grant from Kent State University. The researcher received no funding from either energy bar manufacturer.

A study published in Angiology shows that supplementation with the pine bark extract Pycnogenol® (pic-noj-en-all) improves blood flow to the muscles which speeds recovery after physical exercise. The study of 113 participants demonstrated that Pycnogenol significantly reduces muscular pain and cramps in athletes and healthy, normal individuals.

“With the millions of athletes worldwide, this truly is a profound breakthrough and extremely significant for all individuals interested in muscle cramp and pain relief with a natural approach. These findings indicate that Pycnogenol can play an important role in sports by improving blood flow to the muscles and hastening post-exercise recovery, said Dr. Peter Rohdewald, a lead researcher of the study.

Researchers at L’Aquila University in Italy and at the University of Würzburg in Germany studied the effects of Pycnogenol® on venous disorders and cramping in two separate studies.

The first study consisted of 66 participants who had experienced normal cramping at some point, had venous insufficiency, or were athletes who suffer from exercise-induced cramping. The first two weeks of the study was an observation period and participants did not supplement with Pycnogenol®. Symptoms related to venous disorders, and the number of cramping episodes each participant experienced over the two observation weeks was recorded.

Next, all the participants were given 200 mg of Pycnogenol once a day for four weeks. After the treatment phase, participants’ symptoms and cramping episodes were recorded for one week without any Pycnogenol supplementation.

The researchers found a significant decrease in the number of cramps the participants experienced while supplementing with Pycnogenol.® Participants who had experienced normal cramping had a 25 percent reduction in the number of cramps experienced while taking Pycnogenol.

Participants with venous insufficiency experienced a 40 percent reduction in the number of cramps, and athletes with frequent cramping experienced a 13 percent reduction in the number of cramps while on Pycnogenol.®

The second study involved 47 participants with diabetic microangiopathy (a disorder of the smallest veins commonly associated with diabetes), or intermittent claudication (a blood vessel disease that causes the legs to easily cramp).This study also used a two-week pre-trial observation period followed by a week of supplementing with Pycnogenol (200 mg per day for one week), followed by a week of observation without Pycnogenol® supplementation.

Patients with diabetic microangiopathy had a 20.8 percent reduction in pain, while participants with claudication experienced a 21 percent decrease in the amount of pain experienced while supplementing with Pycnogenol.® Results indicated participants who took placebo experienced no decrease in pain.

Cramps are a common problem for people of all ages, ranging to the extreme fit and healthy to people who suffer from health problems. Previously, magnesium was hailed as the natural approach for relieving muscle cramps, however studies continue to show magnesium to be inefficient for reducing muscle cramps.

“Pycnogenol® improves the blood supply to muscle tissue creating a relief effect on muscle cramping and pain. Poor circulation in the muscle is known to cause cramps and Pycnogenol® improved the cramping in patients due to a stimulation of blood flow to their muscle tissue. Nitric oxide (NO) a blood gas, is well known to enhance blood flow and Pycnogenol® may be influencing the activity of NO,” said Rohdewald. “The insufficient production of NO is the common denominator responsible for impaired blood flow in vascular disease.”

Strenuous exercise is known to involve muscle damage which may be followed by symptoms of inflammation. In separate studies published this year and in 2004 and 2005, Pycnogenol® demonstrated its anti-inflammatory effects in clinical trials for asthma, dysmenorrhea and osteoarthritis.

—————————-
Article adapted by MD Only Weblog from original press release.
—————————-  

Contact: Pycnogenol®

About Pycnogenol®
Pycnogenol® is a natural plant extract originating from the bark of the maritime pine that grows along the coast of southwest France and is found to contain a unique combination of procyanidins, bioflavonoids and organic acids, which offer extensive natural health benefits. The extract has been widely studied for the past 35 years and has more than 220 published studies and review articles ensuring safety and efficacy as an ingredient. Today, Pycnogenol® is available in more than 600 dietary supplements, multi-vitamins and health products worldwide.

Don’t drink alcohol. Take vitamins. Avoid eating eggs. We’ve heard these pieces of nutritional advice for years – but are they accurate?

Not necessarily, say two exercise physiologists who presented at the American College of Sports Medicine (ACSM) 11th-annual Health & Fitness Summit & Exposition in Dallas, Texas. Wendy Repovich, Ph.D., FACSM, and Janet Peterson, Dr.P.H., FACSM, set out to debunk the “Top 10 Nutrition Myths.”

According to Repovich and Peterson, these nutrition myths are:

10. Eating carbohydrates makes you fat. Cutting carbs from your diet may have short-term weight loss benefits due to water loss from a decrease in carbohydrate stores, but eating carbs in moderation does not directly lead to weight gain. The body uses carbs for energy, and going too long without them can cause lethargy.

9. Drink eight, 8-oz. glasses of water per day. You should replace water lost through breathing, excrement and sweating each day – but that doesn’t necessarily total 64 ounces of water. It’s hard to measure the exact amount of water you have consumed daily in food and drink, but if your urine is pale yellow, you’re doing a good job. If it’s a darker yellow, drink more H2O.

8. Brown grain products are whole grain products. Brown dyes and additives can give foods the deceiving appearance of whole grain. Read labels to be sure a food is whole grain, and try to get three-ounce equivalents of whole grains per day to reduce the risk of heart disease, diabetes, and stroke.

7. Eating eggs will raise your cholesterol. This myth began because egg yolks have the most concentrated amount of cholesterol of any food. However, there’s not enough cholesterol there to pose health risks if eggs are eaten in moderation. Studies suggest that eating one egg per day will not raise cholesterol levels and that eggs are actually a great source of nutrients.

6. All alcohol is bad for you. Again, moderation is key. Six ounces of wine and 12 ounces of beer are considered moderate amounts, and should not pose any adverse health effects to the average healthy adult. All alcohol is an anticoagulant and red wine also contains antioxidants, so drinking a small amount daily can be beneficial.

5. Vitamin supplements are necessary for everyone. If you eat a variety of fruits, vegetables, and whole grains, along with moderate amounts of a variety of low-fat dairy and protein and the right quantity of calories, you don’t need to supplement. Most Americans do not, so a multi-vitamin might be good. Special vitamin supplements are also recommended for people who are pregnant or have nutritional disorders.

4. Consuming extra protein is necessary to build muscle mass. Contrary to claims of some protein supplement companies, consuming extra protein does nothing to bulk up muscle unless you are also doing significant weight training at the same time. Even then the increased requirement can easily come from food. A potential problem with supplements is the body has to work overtime to get rid of excess protein, and can become distressed as a result.

3. Eating fiber causes problems if you have irritable bowel syndrome (IBS). There are two kinds of fiber: soluble and insoluble. Insoluble fiber can cause problems in IBS sufferers; soluble fiber, however, is more easily absorbed by the body and helps prevent constipation for those with IBS. Soluble fiber is found in most grains.

2. Eating immediately after a workout will improve recovery. Endurance athletes need to take in carbohydrates immediately after a workout to replace glycogen stores, and a small amount of protein with the drink enhances the effect. Drinking low-fat chocolate milk or a carbohydrate drink, like Gatorade, is better for the body, as they replace glycogen stores lost during exercise. Protein is not going to help build muscle, so strength athletes do not need to eat immediately following their workout.

1. Type 2 diabetes can be prevented by eating foods low on the glycemic index. High levels of glucose are not what “cause” diabetes; the disease is caused by the body’s resistance to insulin. Foods high on the glycemic index can cause glucose levels to spike, but this is just an indicator of the presence of diabetes, not the root cause.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Communications and Public Information
American College of Sports Medicine

The American College of Sports Medicine is the largest sports medicine and exercise science organization in the world. More than 20,000 International, National and Regional members are dedicated to promoting and integrating scientific research, education and practical applications of sports medicine and exercise science to maintain and enhance physical performance, fitness, health and quality of life.

Lower muscle mass and an increase in body fat are common consequences of growing older.

While exercise is a proven way to prevent the loss of muscle mass, a new study led by McMaster researcher Dr. Mark Tarnopolsky shows that taking a combination of creatine monohydrate (CrM) and conjugated linoleic acid (CLA) in addition to resistance exercise training provides even greater benefits.

The study to be published on Oct. 3 in PLoS One, an international, peer-reviewed online journal of the Public Library of Science, involved 19 men and 20 women who were 65 years or older and took part in a six-month program of regular resistance exercise training.

In the randomized double blind trial, some of the participants were given a daily supplement of creatine (a naturally produced compound that supplies energy to muscles) and linoleic acid (a naturally occurring fatty acid), while others were given a placebo. All participants took part in the same exercise program.

The exercise training resulted in improvements of functional ability and strength in all participants, but those taking the CrM and CLA showed even greater gains in muscle endurance, an increase in fat-free mass and a decrease in the percentage of body fat.

“This data confirms that supervised resistance exercise training is safe and effective for increasing strength and function in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six month period,” said Tarnopolsky, a professor of pediatrics and medicine.

This study provides functional outcomes that build on an earlier mechanistic study co-led by Tarnopolsky and Dr. S. Melov at the Buck Institute of Age Research, published in PLoS One this year, which provided evidence that six months of resistance exercise reversed some of the muscle gene expression abnormalities associated with the aging process.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Veronica McGuire
McMaster University

Steroid use starts early, decreases as teens grow older

Participation in sports with real or perceived weight requirements, such as ballet, gymnastics, and wrestling, is strongly associated with unhealthy weight control behaviors and steroid use in teens, according to researchers at the University of Minnesota.

Research published in the March 2007 issue of the Journal of the American Dietetic Association found nearly 6 percent of males between the ages of 12 and 18 who participated in weight-related sports induced vomiting within the week prior to being surveyed, as compared to only 0.9 percent of males who did not participate in weight- related sports. The use of diuretics within the previous year was reported by 4.2 percent of males in a weight-related sport, as opposed to 0.8 percent who did not participate in a weight-related sport.

Steroid use was reported in 6.8 percent of females who reported participating in weight-related sports, compared to 2.3 percent of those that weren’t active in a weight-related sport. Vomiting and using laxatives were also more likely in girls who were active in weight-related sports.

“The link between unhealthy weight-control behaviors and weight-related sports, especially in boys, is alarming,” said Marla Eisenberg, Sc.D., M.P.H., assistant professor at the University of Minnesota Medical School Department of Pediatrics. “Parents and coaches should emphasize skill and talent instead of weight and body image and educate teens about the negative health effects of steroid use and extreme weight control.” Researchers surveyed over 4,500 middle and high school students from the Minneapolis/St. Paul metro area. The students were asked if they had engaged in self-induced vomiting, used diet pills or laxatives, or used steroids within the previous week and year.

Steroid use in teens peaks at young age, but overall use has not increasedIn a separate study, published in the March 2007 issue of Pediatrics, University of Minnesota researchers surveyed the same teen population again five years later. They found that steroid use among teens peaked at 5 percent in middle school boys and girls, but as they grew older, steroid use declined significantly.

“It is encouraging to see that the majority of young people who reported using steroids in 1999 stopped using them as they got older,” said Patricia van den Berg, Ph.D., lead author of the study from the University of Minnesota School of Public Health. “But even given this decline, between one and three in 100 teens still reported using steroids within the last year when asked again 5 years later.”

Researchers conducted the longitudinal study with more than 2,000 adolescents to examine changes in eating patterns, weight, physical activity, and related factors over five years. Participants completed two surveys, one in 1999 and one in 2004, to determine if there were changes in steroid use.

Overall, 1.7 percent of boys and 1.4 percent of girls between the ages of 15 and 23 reported steroid use in 2004. Those that reported use early on were 4 to 10 times more likely to use later in life.

Boys who reported wanting a larger body in 1999, as well as those who said they used healthy weight-control behaviors, were more likely to take steroids when they were older. In contrast, girls who were heavier, less satisfied with their weight, and who had limited knowledge of healthy eating and exercise habits were more likely to take steroids as they grew older.

The study found no significant change in steroid use overall among teens from 1999-2004. “Our research suggests that the increased media coverage surrounding steroid use among athletes in recent years hasn’t led to a huge rise in steroid use in young people,” said van den Berg.

Anabolic-androgenic steroids are synthetic derivatives of the male hormone, testosterone. They are typically taken to increase muscle mass and strength for either improved sports performance or enhanced appearance. These steroids have significant negative effects on the body’s muscles, bones, heart, reproductive system, liver, and psychological state.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Liz Wulderk
University of Minnesota 
 

Project EAT: Eating Among Teens Both studies are part of Project EAT: Eating Among Teens, research designed to investigate the factors influencing the eating habits of adolescents, to determine if youth are meeting national dietary recommendations, and to explore dieting, physical activity patterns, and related factors among youth. The project is designed to build a greater understanding of the socio-environmental, personal, and behavioral factors associated with diet and weight-related behaviors during adolescence so more effective nutrition interventions can be developed.

The studies were supported by the Maternal and Child Health Program, Health Resources and Services Administration, the Department of Health and Human Services, and a training grant from the Centers for Disease Control.

Myostatin (MSTN) is a transforming growth factor-ß (TGF-ß) family member that plays a critical role in regulating skeletal muscle mass [1]. Mice engineered to carry a deletion of the Mstn gene have about a doubling of skeletal muscle mass throughout the body as a result of a combination of muscle fiber hyperplasia and hypertrophy [2]. Moreover, loss of myostatin activity resulting either from postnatal inactivation of the Mstn gene [3], [4] or following administration of various myostatin inhibitors to wild type adult mice [5][7] can also lead to significant muscle growth. Hence, myostatin appears to play as least two distinct roles, one to regulate the number of muscle fibers that are formed during development and a second to regulate growth of muscle fibers postnatally. The function of myostatin appears to have been conserved across species, as inactivating mutations in the myostatin gene have been demonstrated to cause increased muscling in cattle [8][11] , sheep [12], dogs [13] and humans [14]. As a result, there has been considerable effort directed at developing strategies to modulate myostatin activity in clinical settings where enhancing muscle growth may be beneficial. In this regard, loss of myostatin activity has been demonstrated to improve muscle mass and function in dystrophic mice [15][17] and to have beneficial effects on fat and glucose metabolism in mouse models of obesity and type II diabetes [18].

Myostatin is synthesized as a precursor protein that undergoes proteolytic processing to generate an N-terminal propeptide and a C-terminal dimer, which is the biologically active species. Following proteolytic processing, the propeptide remains bound to the C-terminal dimer and maintains it in an inactive, latent complex [6], [19], [20], which represents one of the major forms of myostatin that circulates in the blood [21], [22]. In addition to the propeptide, other binding proteins are capable of regulating myostatin activity in vitro, including follistatin [19], [21], FLRG [22], and Gasp-1 [23]. We previously showed that follistatin can also block myostatin activity in vivo; specifically, we showed that follistatin can ameliorate the cachexia induced by high level expression of myostatin in nude mice [21] and that transgenic mice expressing follistatin in muscle have dramatic increases in muscle mass [19]. Here, I show that overexpression of follistatin can also cause substantial muscle growth in mice lacking myostatin, demonstrating that other TGF-ß related ligands normally cooperate with myostatin to suppress muscle growth and that the capacity for enhancing muscle growth by targeting this signaling pathway is much larger than previously appreciated.

Results

Increased muscle mass in transgenic mice expressing FLRG

Previous studies have identified several proteins that are normally found in a complex with myostatin in the blood [22], [23]. One of these is the follistatin related protein, FLRG, which has been demonstrated to be capable of inhibiting myostatin activity in vitro. To determine whether FLRG can also inhibit myostatin activity in vivo, I generated a construct in which the FLRG coding sequence was placed downstream of a myosin light chain promoter/enhancer. From pronuclear injections of this construct, a total of four transgenic mouse lines (Z111A, Z111B, Z116A, and Z116B) were obtained containing independently segregating insertion sites. Each of these four transgenic lines was backcrossed at least 6 times to C57 BL/6 mice prior to analysis in order to control for genetic background effects. Northern analysis revealed that in three of these lines the transgene was expressed in skeletal muscles but not in any of the non-skeletal muscle tissues examined (Figure 1); in the fourth line, Z111B, the expression of the transgene was below the level of detection in these blots. As shown in Table 1, all four lines exhibited significant increases in muscle weights compared to wild type control mice. These increases were observed in all four muscles that were examined as well as in both sexes. Moreover, the rank order of magnitude of these increases correlated with the rank order of expression levels of the transgene; in the highest-expressing line, Z116A, muscle weights were increased by 57–81% in females and 87–116% in males compared to wild type mice. Hence, FLRG is capable of increasing muscle growth in a dose-dependent manner when expressed as a transgene in skeletal muscle.

The research was funded by grants from the NIH and the Muscular Dystrophy Association and by a gift from Merck Research Laboratories.

See http://www.jhu.edu/sejinlee/%20for%20more%20information for more information.
Citation: Lee S-J (2007) Quadrupling Muscle Mass in Mice by Targeting TGF-ß Signaling Pathways. PLoS ONE 2(8): e789. doi:10.1371/journal.pone.0000789

LINK TO THE PUBLISHED ARTICLE http://www.plosone.org/doi/pone.0000789

Source: Nick Zagorski
Johns Hopkins Medical Institutions