Archive for the ‘Sports Medicine’ Category

“No pain, no gain.” So say those working out to build up their muscles, and on a cellular level it is a pretty accurate description of how muscle mass increases. Exercise causes tears in muscle membrane and the healing process produces an increased amount of healthy muscle. Implicit in this scenario is the notion that muscle repair is an efficient and ongoing process in healthy individuals. However, the repair process is not well understood. New University of Iowa research into two types of muscular dystrophy now has opened the door on a muscle repair process and identified a protein that plays a critical role.

The protein, called dysferlin, is mutated in two distinct muscular dystrophies known as Miyoshi Myopathy and limb-girdle muscular dystrophy type 2b. The UI study suggests that in these diseases, the characteristic, progressive muscle degeneration is due to a faulty muscle-repair mechanism rather than an inherent weakness in the muscle’s structural integrity. The research findings reveal a totally new cellular cause of muscular dystrophy and may lead to many discoveries about normal muscle function and to therapies for muscle disorders.

The research team led by Kevin Campbell, Ph.D., the Roy J. Carver Chair of Physiology and Biophysics and interim head of the department, UI professor of neurology, and a Howard Hughes Medical Institute (HHMI) Investigator, studied the molecular consequences of losing dysferlin and discovered that without dysferlin muscles were unable to heal themselves.

The UI team genetically engineered mice to lack the dysferlin gene. Just like humans with Miyoshi Myopathy and limb-girdle muscular dystrophy type 2b, the mice developed a muscular dystrophy, which gets progressively worse with age. However, treadmill tests revealed that the muscles of mice that lack dysferlin were not much more susceptible to damage than the muscles of normal mice. This contrasts with most muscular dystrophies of known cause where genetic mutations weaken muscle membranes and make muscles more prone to damage.

“This told us that the dystrophies caused by dysferlin loss were very different in terms of how the disease process works compared to other dystrophies we have studied,” Campbell said. “We were gradually picking up clues that showed we had a different type of muscular dystrophy here.”

Most muscular dystrophy causing genetic mutations have been linked to disruption of a large protein complex that controls the structural integrity of muscle cells. The researchers found that dysferlin was not associated with this large protein complex. Rather, dysferlin is normally found throughout muscle plasma membrane and also in vesicles, which are small membrane bubbles that encapsulate important cellular substances and ferry them around cells. Vesicles also are important for moving membrane around in cells.

Previous studies have shown that resealing cell membranes requires the accumulation and fusing of vesicles to repair the damaged site.

Using an electron microscope to examine muscles lacking dysferlin, the UI team found that although vesicles gathered at damaged membrane sites, the membrane was not resealed. In contrast, the team discovered that when normal muscle is injured, visible “patches” form at the damaged sites, which seal the holes in the membrane. Chemicals that tag dysferlin proved that these “patches” were enriched with dysferlin and the patches appeared to be formed by the fusion of dysferlin-containing vesicles that traveled though the cell to the site of membrane damage.

The researchers then used a high-powered laser and a special dye to visualize the repair process in real time.

Under normal conditions, the dye is unable to penetrate muscle membrane. However, if the membrane is broken the dye can enter the muscle fiber where it fluoresces. Using the laser to damage a specific area of muscle membrane, the researchers could watch the fluorescence increase as the dye flowed into the muscle fiber.

“The more dye that entered, the more fluorescence we saw,” Campbell explained. “However, once the membrane was repaired, no more dye could enter and the level of fluorescence remained steady. Measuring the increase in fluorescence let us measure the amount of time that the membrane stayed open before repair sealed the membrane and prevented any more dye from entering.”

In the presence of calcium, normal membrane repaired itself in about a minute. In the absence of calcium, vesicles gathered at the damaged muscle membrane, but they did not fuse with each other or with the membrane and the membrane was not repaired. In muscle that lacked dysferlin, even in the presence of calcium, the damaged site was not repaired.

Campbell speculated that dysferlin, which contains calcium-binding regions, may be acting as a calcium sensor and that the repair system needs to sense the calcium in order to initiate the fusion and patching of the hole. Campbell added that purifying the protein and testing its properties should help pin down its role in the repair process.

The discovery of a muscle repair process and of dysferlin’s role raises many new questions. In particular, Campbell wonders what other proteins might be involved and whether defects in those components could be the cause of other muscular dystrophies.

“This work has described a new physiological mechanism in muscle and identified a component of this repair process,” Campbell said. “What is really exciting for me is the feeling that this is just a little hint of a much bigger picture.”

In addition to Campbell, the UI researchers included Dimple Bansal, a graduate student in Campbell’s laboratory and the lead author of the paper, Severine Groh, Ph.D., and Chien-Chang Chen, Ph.D., both UI post-doctoral researchers in physiology and biophysics and neurology, and Roger Williamson, M.D., UI professor of obstetrics and gynecology. Also part of the research team were Katsuya Miyake, Ph.D., a postdoctoral researcher, and Paul McNeil, Ph.D., a professor of cellular biology and anatomy at the Medical College of Georgia in Augusta, Ga., and Steven Vogel, Ph.D., at the Laboratory of Molecular Physiology at the National Institute of Alcohol Abuse and Alcoholism, Rockville, Md.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jennifer Brown
University of Iowa 

The study was funded by a grant from the Muscular Dystrophy Association.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide.

Scientists may soon be able to influence muscle formation more easily as a result of research conducted in the National Institute of Arthritis and Musculoskeletal and Skin Diseases’ Laboratory of Muscle Biology. The researchers there and at institutions in California and Italy have found that inhibitors of the enzyme deacetylase can switch the pathway of muscle precursor cells (myoblasts) from simply reproducing themselves to becoming mature cells that form muscle fibers (myotubules).

It has been known for some time that deacetylase prevents the skeletal muscle gene from being expressed, which inhibits myoblasts from forming muscle. The research team has found that under certain conditions, deacetylase inhibitors (DIs) in myoblasts enhance muscle gene expression and muscle fiber formation.

Knowledge of how DIs act against deacetylase is providing important insights on potential ways to correct problems that occur during embryonic muscle development. This research may also lead to methods to induce muscle growth, regeneration and repair in adults.

Simona Iezzi, Ph.D., and Vittorio Sartorelli, M.D., in the NIAMS Muscle Gene Expression Group, along with Pier Lorenzo Puri, M.D., at the Salk Institute for Biological Studies and other investigators at the University of Rome, exposed human and mouse myoblasts to DIs while they were dividing or after placement in a medium that stimulates myoblasts to become muscle cells. The researchers found that exposing dividing human and mouse myoblasts to a DI increased the levels of muscle proteins and led to a dramatic increase in the formation of muscle fibers. Similar experiments were done in developing mouse embryos, resulting in an increased number of somites (the regions of the embryo from which muscle cells are derived) and augmented expression of muscle genes.

Dr. Sartorelli’s group continues to investigate how the myoblasts are stimulated to fuse into myotubules. One theory is that the performance of poorly differentiated myoblasts is enhanced when they are recruited by cells with a good capacity to differentiate. Further research will be directed at discovering whether the cells that have been induced to form muscle will restore muscle function when transplanted into a mouse model of muscular dystrophy. In addition, the researchers at the NIAMS Muscle Gene Expression Group plan to expose adult muscle stem cells from a mouse model to DIs to understand their biology and their potential use as therapeutic tools.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Judith Wortman
NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases

Iezzi S, Cossu G, Nervi C, Sartorelli V, Puri P. Stage-specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylases. PNAS 2002;99(11):7757-7762.

Duke University Medical Center researchers have identified the skeletal muscle changes that occur in response to endurance exercise and have better defined the role of vascular endothelial growth factor (VEGF) in creating new blood vessels, known as angiogenesis, in the process.

VEGF is a protein known to trigger blood vessel growth by activating numerous genes involved in angiogenesis.
The researchers’ new insights could provide a roadmap for medical investigators as they seek to use VEGF in treating human conditions characterized by lack of adequate blood flow, such as coronary artery disease or peripheral arterial disease.
Using mice as animal models, the researchers found that exercise initially stimulates the production of VEGF, which then leads to an increase in the number of capillaries within a specific muscle fiber type, ultimately leading to an anaerobic to aerobic change in the muscle fibers supplied by those vessels. The VEGF gene produces a protein that is known to trigger blood vessel growth.
The results of the Duke experiments were presented by cardiologist Richard Waters, M.D., Nov. 8, 2004, at the American Heart Association’s annual scientific sessions in New Orleans.
“It is known that exercise can improve the symptoms of peripheral arterial disease in humans and it has been assumed that angiogenesis played a role in this improvement,” Waters said. “However, the clinical angiogenesis trials to date utilizing VEGF have been marginally successful and largely disappointing, so we felt it would be better at this point to return to animal studies in an attempt to better understand the angiogenic process.”
The Duke team performed their experiments using a mouse model of voluntary exercise. This experimental approach is important, they explained, because most skeletal muscle adaptation studies utilize electrical stimulation of the muscle, which is much less physiologic and does not as closely mimic what would be expected in human exercise.
When placed in the dark with a running wheel, mice will instinctively run, the researchers said. In the Duke experiments, 41 out of 42 mice “ran” up to seven miles each night. At regular intervals over a 28-day period, the researchers then performed detailed analysis of capillary growth and the subsequent changes in muscle fiber type and compared these findings to sedentary mice.
Mammalian muscle is generally made up of two different fiber types – slow-twitch fibers requiring oxygen to function, and the fast-twitch fibers, which function in the absence of oxygen by breaking down glucose. Because of their need for oxygen, slow-twitch fibers tend to have a higher density of capillaries.
“Exercise training is probably the most widely utilized physiological stimulus for skeletal muscle, but the mechanisms underlying the adaptations muscle fibers make in response to exercise is not well understood,” Waters said. “What we have shown in our model is that increases in the capillary density occur before a significant change from fast-twitch to slow-twitch fiber type, and furthermore, that changes in levels of the VEGF protein occur before the increased capillary density.”
“Interestingly, capillary growth appears to occur preferentially among fast-twitch fibers, and it is these very fibers that likely change to slow-twitch fibers,” Waters said. “Since exercise has the potential to impact an enormous number of clinical conditions, therapeutic manipulations intended to alter the response to exercise would benefit from a more detailed understanding of what actually happens to muscle as a result of exercise.”
The exact relationship between VEGF, exercise induced angiogenesis, and muscle fiber type adaptation is still not clear and will become the focus of the group’s continuing research. The findings from the current study, however, are providing important temporal and spatial clues to the adaptability process.
“Our data suggests that angiogenesis is one of the key early steps in skeletal muscle adaptation and may be an essential step in the adaptability process,” Waters continued. “This understanding could be crucial for designing new studies that can be performed to inhibit the angiogenic response to exercise in order to directly test the links between angiogenesis and skeletal muscle plasticity.”
###
The research team was supported by grants from the American Heart Association and the U.S. Department of Veterans Affairs.
Other members of the Duke team were Ping Li, Brian Annex, M.D., and Zhen Yan, Ph.D. Svein Rotevatn, Haukeland University Hospital, Bergen, Norway, was also a member of the team.

Duke University Medical Center researchers have identified the skeletal muscle changes that occur in response to endurance exercise and have better defined the role of vascular endothelial growth factor (VEGF) in creating new blood vessels, known as angiogenesis, in the process.

VEGF is a protein known to trigger blood vessel growth by activating numerous genes involved in angiogenesis.

The researchers’ new insights could provide a roadmap for medical investigators as they seek to use VEGF in treating human conditions characterized by lack of adequate blood flow, such as coronary artery disease or peripheral arterial disease.

Using mice as animal models, the researchers found that exercise initially stimulates the production of VEGF, which then leads to an increase in the number of capillaries within a specific muscle fiber type, ultimately leading to an anaerobic to aerobic change in the muscle fibers supplied by those vessels. The VEGF gene produces a protein that is known to trigger blood vessel growth.

The results of the Duke experiments were presented by cardiologist Richard Waters, M.D., Nov. 8, 2004, at the American Heart Association’s annual scientific sessions in New Orleans.

“It is known that exercise can improve the symptoms of peripheral arterial disease in humans and it has been assumed that angiogenesis played a role in this improvement,” Waters said. “However, the clinical angiogenesis trials to date utilizing VEGF have been marginally successful and largely disappointing, so we felt it would be better at this point to return to animal studies in an attempt to better understand the angiogenic process.”

The Duke team performed their experiments using a mouse model of voluntary exercise. This experimental approach is important, they explained, because most skeletal muscle adaptation studies utilize electrical stimulation of the muscle, which is much less physiologic and does not as closely mimic what would be expected in human exercise.

When placed in the dark with a running wheel, mice will instinctively run, the researchers said. In the Duke experiments, 41 out of 42 mice “ran” up to seven miles each night. At regular intervals over a 28-day period, the researchers then performed detailed analysis of capillary growth and the subsequent changes in muscle fiber type and compared these findings to sedentary mice.

Mammalian muscle is generally made up of two different fiber types – slow-twitch fibers requiring oxygen to function, and the fast-twitch fibers, which function in the absence of oxygen by breaking down glucose. Because of their need for oxygen, slow-twitch fibers tend to have a higher density of capillaries.

“Exercise training is probably the most widely utilized physiological stimulus for skeletal muscle, but the mechanisms underlying the adaptations muscle fibers make in response to exercise is not well understood,” Waters said. “What we have shown in our model is that increases in the capillary density occur before a significant change from fast-twitch to slow-twitch fiber type, and furthermore, that changes in levels of the VEGF protein occur before the increased capillary density.”

“Interestingly, capillary growth appears to occur preferentially among fast-twitch fibers, and it is these very fibers that likely change to slow-twitch fibers,” Waters said. “Since exercise has the potential to impact an enormous number of clinical conditions, therapeutic manipulations intended to alter the response to exercise would benefit from a more detailed understanding of what actually happens to muscle as a result of exercise.”

The exact relationship between VEGF, exercise induced angiogenesis, and muscle fiber type adaptation is still not clear and will become the focus of the group’s continuing research. The findings from the current study, however, are providing important temporal and spatial clues to the adaptability process.

“Our data suggests that angiogenesis is one of the key early steps in skeletal muscle adaptation and may be an essential step in the adaptability process,” Waters continued. “This understanding could be crucial for designing new studies that can be performed to inhibit the angiogenic response to exercise in order to directly test the links between angiogenesis and skeletal muscle plasticity.”

 

———————————–
Article adapted by MD Sports from original press release.
———————————–
Contact: Richard Merritt
Duke University Medical Center 

The research team was supported by grants from the American Heart Association and the U.S. Department of Veterans Affairs

University of Pittsburgh School of Medicine researchers have successfully used gene therapy to accelerate muscle regeneration in experimental animals with muscle damage, suggesting this technique may be a novel and effective approach for improving skeletal muscle healing, particularly for serious sports-related injuries. These findings are being presented at the American Society of Gene Therapy annual meeting in Baltimore, May 31 to June 4.

Skeletal muscle injuries are the most common injuries encountered in sports medicine. Although such injuries can heal spontaneously, scar tissue formation, or fibrosis, can significantly impede this process, resulting in incomplete functional recovery. Of particular concern are top athletes, who, when injured, need to recover fully as quickly as possible.
In this study, the Pitt researchers injected mice with a gene therapy vector containing myostatin propeptide–a protein that blocks the activity of the muscle-growth inhibitor myostatin–three weeks prior to experimentally damaging the mice’s skeletal muscles. Four weeks after skeletal muscle injury, the investigators observed an enhancement of muscle regeneration in the gene-therapy treated mice compared to the non-gene-therapy treated control mice. There also was significantly less fibrous scar tissue in the skeletal muscle of the gene-therapy treated mice compared to the control mice.
According to corresponding author Johnny Huard, Ph.D., the Henry J. Mankin Endowed Chair and Professor in Orthopaedic Surgery, University of Pittsburgh School of Medicine, and Director of the Stem Cell Research Center of Children’s Hospital of Pittsburgh, this approach offers a significant, long-lasting method for treating serious, sports-related muscle injuries.
“Based on our previous studies, we expect that gene-therapy treated cells will continue to overproduce myostatin propeptide for at least two years. Since the remodeling phase of skeletal muscle healing is a long-term process, we believe that prolonged expression of myostatin propeptide will continue to contribute to recovery of injured skeletal muscle by inducing an increase in muscle mass and minimizing fibrosis. This could significantly reduce the amount of time an athlete needs to recover and result in a more complete recovery,” he explained.
###
Others involved in this study include, Jinhong Zhu, M.D., Yong Li, M.D., Ph.D., of the Growth and Development Laboratory, Children’s Hospital of Pittsburgh; and Chunping Qiao, M.D., and Xiao Xiao, M.D., Ph.D., of the Molecular Therapies Laboratory, department of orthopaedic surgery, University of Pittsburgh School of Medicine.
University of Pittsburgh School of Medicine researchers have successfully used gene therapy to accelerate muscle regeneration in experimental animals with muscle damage, suggesting this technique may be a novel and effective approach for improving skeletal muscle healing, particularly for serious sports-related injuries.
Skeletal muscle injuries are the most common injuries encountered in sports medicine. Although such injuries can heal spontaneously, scar tissue formation, or fibrosis, can significantly impede this process, resulting in incomplete functional recovery. Of particular concern are top athletes, who, when injured, need to recover fully as quickly as possible.
In this study, the Pitt researchers injected mice with a gene therapy vector containing myostatin propeptide–a protein that blocks the activity of the muscle-growth inhibitor myostatin–three weeks prior to experimentally damaging the mice’s skeletal muscles. Four weeks after skeletal muscle injury, the investigators observed an enhancement of muscle regeneration in the gene-therapy treated mice compared to the non-gene-therapy treated control mice. There also was significantly less fibrous scar tissue in the skeletal muscle of the gene-therapy treated mice compared to the control mice.
According to corresponding author Johnny Huard, Ph.D., the Henry J. Mankin Endowed Chair and Professor in Orthopaedic Surgery, University of Pittsburgh School of Medicine, and Director of the Stem Cell Research Center of Children’s Hospital of Pittsburgh, this approach offers a significant, long-lasting method for treating serious, sports-related muscle injuries.
“Based on our previous studies, we expect that gene-therapy treated cells will continue to overproduce myostatin propeptide for at least two years. Since the remodeling phase of skeletal muscle healing is a long-term process, we believe that prolonged expression of myostatin propeptide will continue to contribute to recovery of injured skeletal muscle by inducing an increase in muscle mass and minimizing fibrosis. This could significantly reduce the amount of time an athlete needs to recover and result in a more complete recovery,” he explained.
———————————–
Article adapted by MD Sports from original press release.
———————————–
Contact: Jim Swyers

Others involved in this study include, Jinhong Zhu, M.D., Yong Li, M.D., Ph.D., of the Growth and Development Laboratory, Children’s Hospital of Pittsburgh; and Chunping Qiao, M.D., and Xiao Xiao, M.D., Ph.D., of the Molecular Therapies Laboratory, department of orthopaedic surgery, University of Pittsburgh School of Medicine.

Scientists have discovered that a group of chemicals known as Histone Deacetylase (HDAC) inhibitors stimulate growth and regeneration of adult skeletal muscle cells by increasing expression of the protein follistatin. The research, published in the May issue of Developmental Cell, may provide new avenues for developing effective means to promote regeneration in muscular dystrophies.

Dr. Vittorio Sartorelli from the Muscle Gene Expression Group in the Laboratory of Muscle Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, in Bethesda, Maryland, and colleagues at the Salk Institute and the Dulbecco Telethon Institute in Rome report that HDAC inhibitors, which stimulate the formation of mature muscle cells from immature precursor cells, also cause a significant elevation of follistatin levels. When follistatin levels are reduced, then HDAC inhibitors no longer stimulate adult muscle growth. The regeneration activities of the HDAC inhibitors appear to function only in skeletal muscle, since follistatin is not stimulated in other cell types tested. In animal studies, administration of an HDAC inhibitor produced clear signs of muscle regeneration in regions of injured skeletal muscle tissues.

“Our findings establish for the first time that follistatin promotes the recruitment and fusion of immature muscle cells to pre-existing adult muscle fibers. These results suggest that follistatin is a promising target for future drug development of muscle regeneration. HDAC inhibitors, by stimulating follistatin, could well be pharmacologically useful as stimulants of muscle regeneration. We are investigating whether these inhibitors are a viable treatment to regenerate healthy new muscle tissues in animal models of muscular dystrophies,” explains Dr. Sartorelli. The functional link between HDAC inhibitors, follistatin, and adult muscle regeneration is especially provocative as an HDAC inhibitor is already being used clinically in humans as an anti-cancer therapeutic.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Heidi Hardman
Cell Press 

Simona Iezzi, Monica Di Padova, Carlo Serra, Giuseppina Caretti, Cristiano Simone, Eric Maklan, Giulia Minetti, Po Zhao, Eric P. Hoffman, Pier Lorenzo Puri, and Vittorio Sartorelli: “Deacetylase Inhibitors Increase Muscle Cell Size by Promoting Myoblast Recruitment and Fusion through Induction of Follistatin”

 

University Park, Pa. – Female athletes often lose their menstrual cycle when training strenuously, but researchers have long speculated on whether this infertility was due to low body fat, low weight or exercise itself. Now, researchers have shown that the cause of athletic amenorrhea is more likely a negative energy balance caused by increasing exercise without increasing food intake.

“A growing proportion of women are susceptible to losing their menstrual cycle when exercising strenuously,” says Dr. Nancy I. Williams, assistant professor of kineseology and physiology at Penn State. “If women go six to 12 months without having a menstrual cycle, they could show bone loss. Bone densities in some long distance runners who have gone for a prolonged time period without having normal menstrual cycles can be very low.”

In studies done with monkeys, which show menstrual cyclicity much like women, researchers showed that low energy availability associated with strenuous exercise training plays an important role in causing exercise-induced amenorrhea. These researchers, working at the University of Pittsburgh, published findings in the Journal of Clinical Endocrinology and Metabolism showing that exercise-induced amenorrhea was reversible in the monkeys by increasing food intake while the monkeys still exercised.

Williams worked with Judy L. Cameron, associate professor of psychiatry and cell biology and physiology at the University of Pittsburgh. Dana L. Helmreich and David B. Parfitt, then graduate students, and Anne Caston-Balderrama, at that time a post-doctoral fellow at the University of Pittsburgh, were also part of the research team. The researchers decided to look at an animal model to understand the causes of exercise-induced amenorrhea because it is difficult to closely control factors, such as eating habits and exercise, when studying humans. They chose cynomolgus monkeys because, like humans, they have a menstrual cycle of 28 days, ovulate in mid-cycle and show monthly periods of menses.

“It is difficult to obtain rigorous control in human studies, short of locking people up,” says Williams.

Previous cross-sectional studies and short-term studies in humans had shown a correlation between changes in energy availability and changes in the menstrual cycle, but those studies were not definitive.

There was also some indication that metabolic states experienced by strenuously exercising women were similar to those in chronically calorie restricted people. However, whether the increased energy utilization which occurs with exercise or some other effect of exercise caused exercise-induced reproductive dysfunction was unknown.

“The idea that exercise or something about exercise is harmful to females was not definitively ruled out,” says Williams. “That exercise itself is harmful would be a dangerous message to put out there. We needed to look at what it was about exercise that caused amenorrhea, what it was that suppresses ovulation. To do that, we needed a carefully controlled study.”

After the researchers monitored normal menstrual cycles in eight monkeys for a few months, they trained the monkeys to run on treadmills, slowly increasing their daily training schedule to about six miles per day. Throughout the training period the amount of food provided remained the standard amount for a normal 4.5 to 7.5 pound monkey, although the researchers note that some monkeys did not finish all of their food all of the time.

The researchers found that during the study “there were no significant changes in body weight or caloric intake over the course of training and the development of amenorrhea.” While body weight did not change, there were indications of an adaptation in energy expenditure. That is, the monkeys’ metabolic hormones also changed, with a 20 percent drop in circulating thyroid hormone, suggesting that the suppression of ovulation is more closely related to negative energy balance than to a decrease in body weight.

To seal the conclusion that a negative energy balance was the key to exercise-induced amenorrhea, the researchers took four of the previous eight monkeys and, while keeping them on the same exercise program, provided them with more food than they were used to. All the monkeys eventually resumed normal menstrual cycles. However, those monkeys who increased their food consumption most rapidly and consumed the most additional food, resumed ovulation within as little as 12 to 16 days while those who increased their caloric intake more slowly, took almost two months to resume ovulation.

Williams is now conducting studies on women who agree to exercise and eat according to a prescribed regimen for four to six months. She is concerned because recreational exercisers have the first signs of ovulatory suppression and may easily be thrust into amenorrhea if energy availability declines. Many women that exercise also restrict their calories, consciously or unconsciously.

“Our goal is to test whether practical guidelines can be developed regarding the optimal balance between calories of food taken in and calories expended through exercise in order to maintain ovulation and regular menstrual cycles,” says Williams. “This would then ensure that estrogen levels were also maintained at healthy levels. This is important because estrogen is a key hormone in the body for many physiological systems, influencing bone strength and cardiovascular health, not just reproduction.”

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: A’ndrea Elyse Messer
Penn State

Research news from Journal of Mass Spectrometry

A new mass spectrometry test can help sports anti-drug doping officials to detect whether an athlete has used drugs that boost naturally occurring steroid levels. The test is more sensitive compared to previous alternatives, more capable of revealing specific suspicious chemical in the body, faster to perform, and could be run on standard drug-screening laboratory equipment. The new test is announced in a special issue of the Journal of Mass Spectrometry that concentrates on detecting drugs in sports.

One of the roles of the masculinising hormone testosterone is to increase muscle size and strength. Taking extra testosterone, or taking a chemical that the body can use to create extra testosterone, could therefore enhance an athlete’s performance. For this reason taking it is banned by the World Anti-Doping Agency (WADA).

The exact level of testosterone varies considerably between different people, so simply measuring total testosterone in an athlete’s urine can not show whether he or she has deliberately taken extra. There is, however, a second chemical in the body, epitestosterone, which is normally present in approximately equal proportions to testosterone. Comparing the ratio of testosterone to epitestosterone can then indicate whether testosterone or a precursor has been taken.

The problem is that it is not always easy to measure these two substances, particularly as they are only present in urine at very low concentrations.

A team of scientists the Sports Medicine Research and Testing Laboratory at the University of Utah have developed a test that makes use of liquid chromatography-tandem mass spectrometry. This method has incredibly high sensitivity (down to 1 ng/ml) and increases the power with which officials can search for both testosterone and epitestosterone within a sample.

“Our system means that we can determine the testosterone/epitestosterone ratio in a sample with greater confidence, and therefore be in a better position to spot doping violations without falsely accusing innocent athletes,” says lead investigator Dr Jonathan Danaceau.

“Not only is the test more sensitive, it is also faster to perform,” says colleague Scott Morrison.

“Having this sort of test available makes cheating harder and lets us take one more step towards enabling free and fair competition,” says Laboratory Director Dr Matthew Slawson.

This paper is part of a special issue for the Olympic Games from the Journal of Mass Spectrometry which focuses of drug use in sport. The issue is available free of charge online for one month at http://www.interscience.wiley.com/journal/jms. The other articles publishing in this issue are:

 

  • History of Mass Spectrometry at Olympic Games (DOI: 10.1002/jms.1445)
  • Nutritional supplements cross-contaminated and faked with doping substances (DOI: 10.1002/jms.1452)
  • Hair analysis of anabolic steroids in connection with doping control results from horse samples (DOI: 10.1002/jms.1446)
  • Mass spectrometric determination of Gonadotrophin releasing hormone (GnRH) in human urine for doping control purposes by means of LC-ESI-MS/MS (DOI: 10.1002/jms.1438)
  • Liquid chromatographic-mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: method validation and inter-laboratory comparison (DOI: 10.1002/jms.1434)
  • Mass Spectrometry of Selective Androgen Receptor Modulators (DOI: 10.1002/jms.1438)
  • Can glycans unveil the origin of glycoprotein hormones? – human chorionic gonadotropin as an example (DOI: 10.1002/jms.1448)
  • A High-Throughput Multicomponent Screening Method for Diuretics, Masking Agents, Central Nervous System Stimulants and Opiates in Human Urine by UPLC-MS/MS (DOI: 10.1002/jms.1436)
  • The application of carbon isotope ratio mass spectrometry to doping control (DOI: 10.1002/jms.1437)
  • Identification of zinc-alpha-2-glycoprotein binding to clone ae7a5 anti-human epo antibody by means of nano-hplc and high-resolution highmass accuracy esi-ms/ms (DOI: 10.1002/jms.1444)
  • Low LC-MS/MS Detection of Glycopeptides Released from pmol Levels of Recombinant Erythropoietin using Nanoflow HPLC-Chip Electrospray Ionization (DOI: 10.1002/jms.1439)
  • Introduction of HPLC/Orbitrap mass spectrometry as screening method for doping control (DOI: 10.1002/jms.1447)

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jennifer Beal
Wiley-Blackwell