Posts Tagged ‘Exercise’

UK researchers believe that eating watercress may alleviate the oxidative stress that comes with heavy bouts of exercise.   Watercress contains an array of nutritional compounds such as β-carotene and α-tocopherol which may increase protection against exercise-induced oxidative stress. The leafy green vegetable was the focus of a recent study published in the British Journal of Nutrition.

Ten healthy males were assigned to eight weeks of watercress consumption followed by eight weeks of control (no watercress). Blood samples were analyzed for DNA damage and lipid peroxidation at baseline (before supplementation), at rest (before exercise), and following exercise.

Exercise resulted in an increase in DNA damage and lipid peroxidation when subjects took part in the control phase of the study, but when watercress was added to the diet, markers of DNA damage and lipid peroxidation were significantly reduced. Even acute supplementation improved DNA and lipid protection, suggesting that only small amounts of the leafy green were needed to reduce oxidative stress in the body.

Blood analysis revealed notable increases of xanthophylls, alpha-tocopherol, and gamma-tocopherol with watercress consumption. The researchers proposed that these compounds might have a role in increased protection against oxidative stress.

The main findings show an exercise-induced increase in DNA damage and lipid peroxidation over both acute and chronic control supplementation phases (< 0·05 v. supplementation), while acute and chronic watercress attenuated DNA damage and lipid peroxidation and decreased H2O2 accumulation following exhaustive exercise (P < 0·05 v. supplementation), while acute and chronic watercress attenuated DNA damage and lipid peroxidation and decreased H2O2 accumulation following exhaustive exercise (P < 0·05 v. control). A marked increase in the main lipid-soluble antioxidants (α-tocopherol, γ-tocopherol and xanthophyll) was observed following watercress supplementation (P < 0·05 v. control) in both experimental phases. These findings suggest that short- and long-term watercress ingestion has potential antioxidant effects against exercise-induced DNA damage and lipid peroxidation.

Duke University Medical Center researchers have identified the skeletal muscle changes that occur in response to endurance exercise and have better defined the role of vascular endothelial growth factor (VEGF) in creating new blood vessels, known as angiogenesis, in the process.

VEGF is a protein known to trigger blood vessel growth by activating numerous genes involved in angiogenesis.
The researchers’ new insights could provide a roadmap for medical investigators as they seek to use VEGF in treating human conditions characterized by lack of adequate blood flow, such as coronary artery disease or peripheral arterial disease.
Using mice as animal models, the researchers found that exercise initially stimulates the production of VEGF, which then leads to an increase in the number of capillaries within a specific muscle fiber type, ultimately leading to an anaerobic to aerobic change in the muscle fibers supplied by those vessels. The VEGF gene produces a protein that is known to trigger blood vessel growth.
The results of the Duke experiments were presented by cardiologist Richard Waters, M.D., Nov. 8, 2004, at the American Heart Association’s annual scientific sessions in New Orleans.
“It is known that exercise can improve the symptoms of peripheral arterial disease in humans and it has been assumed that angiogenesis played a role in this improvement,” Waters said. “However, the clinical angiogenesis trials to date utilizing VEGF have been marginally successful and largely disappointing, so we felt it would be better at this point to return to animal studies in an attempt to better understand the angiogenic process.”
The Duke team performed their experiments using a mouse model of voluntary exercise. This experimental approach is important, they explained, because most skeletal muscle adaptation studies utilize electrical stimulation of the muscle, which is much less physiologic and does not as closely mimic what would be expected in human exercise.
When placed in the dark with a running wheel, mice will instinctively run, the researchers said. In the Duke experiments, 41 out of 42 mice “ran” up to seven miles each night. At regular intervals over a 28-day period, the researchers then performed detailed analysis of capillary growth and the subsequent changes in muscle fiber type and compared these findings to sedentary mice.
Mammalian muscle is generally made up of two different fiber types – slow-twitch fibers requiring oxygen to function, and the fast-twitch fibers, which function in the absence of oxygen by breaking down glucose. Because of their need for oxygen, slow-twitch fibers tend to have a higher density of capillaries.
“Exercise training is probably the most widely utilized physiological stimulus for skeletal muscle, but the mechanisms underlying the adaptations muscle fibers make in response to exercise is not well understood,” Waters said. “What we have shown in our model is that increases in the capillary density occur before a significant change from fast-twitch to slow-twitch fiber type, and furthermore, that changes in levels of the VEGF protein occur before the increased capillary density.”
“Interestingly, capillary growth appears to occur preferentially among fast-twitch fibers, and it is these very fibers that likely change to slow-twitch fibers,” Waters said. “Since exercise has the potential to impact an enormous number of clinical conditions, therapeutic manipulations intended to alter the response to exercise would benefit from a more detailed understanding of what actually happens to muscle as a result of exercise.”
The exact relationship between VEGF, exercise induced angiogenesis, and muscle fiber type adaptation is still not clear and will become the focus of the group’s continuing research. The findings from the current study, however, are providing important temporal and spatial clues to the adaptability process.
“Our data suggests that angiogenesis is one of the key early steps in skeletal muscle adaptation and may be an essential step in the adaptability process,” Waters continued. “This understanding could be crucial for designing new studies that can be performed to inhibit the angiogenic response to exercise in order to directly test the links between angiogenesis and skeletal muscle plasticity.”
###
The research team was supported by grants from the American Heart Association and the U.S. Department of Veterans Affairs.
Other members of the Duke team were Ping Li, Brian Annex, M.D., and Zhen Yan, Ph.D. Svein Rotevatn, Haukeland University Hospital, Bergen, Norway, was also a member of the team.

Duke University Medical Center researchers have identified the skeletal muscle changes that occur in response to endurance exercise and have better defined the role of vascular endothelial growth factor (VEGF) in creating new blood vessels, known as angiogenesis, in the process.

VEGF is a protein known to trigger blood vessel growth by activating numerous genes involved in angiogenesis.

The researchers’ new insights could provide a roadmap for medical investigators as they seek to use VEGF in treating human conditions characterized by lack of adequate blood flow, such as coronary artery disease or peripheral arterial disease.

Using mice as animal models, the researchers found that exercise initially stimulates the production of VEGF, which then leads to an increase in the number of capillaries within a specific muscle fiber type, ultimately leading to an anaerobic to aerobic change in the muscle fibers supplied by those vessels. The VEGF gene produces a protein that is known to trigger blood vessel growth.

The results of the Duke experiments were presented by cardiologist Richard Waters, M.D., Nov. 8, 2004, at the American Heart Association’s annual scientific sessions in New Orleans.

“It is known that exercise can improve the symptoms of peripheral arterial disease in humans and it has been assumed that angiogenesis played a role in this improvement,” Waters said. “However, the clinical angiogenesis trials to date utilizing VEGF have been marginally successful and largely disappointing, so we felt it would be better at this point to return to animal studies in an attempt to better understand the angiogenic process.”

The Duke team performed their experiments using a mouse model of voluntary exercise. This experimental approach is important, they explained, because most skeletal muscle adaptation studies utilize electrical stimulation of the muscle, which is much less physiologic and does not as closely mimic what would be expected in human exercise.

When placed in the dark with a running wheel, mice will instinctively run, the researchers said. In the Duke experiments, 41 out of 42 mice “ran” up to seven miles each night. At regular intervals over a 28-day period, the researchers then performed detailed analysis of capillary growth and the subsequent changes in muscle fiber type and compared these findings to sedentary mice.

Mammalian muscle is generally made up of two different fiber types – slow-twitch fibers requiring oxygen to function, and the fast-twitch fibers, which function in the absence of oxygen by breaking down glucose. Because of their need for oxygen, slow-twitch fibers tend to have a higher density of capillaries.

“Exercise training is probably the most widely utilized physiological stimulus for skeletal muscle, but the mechanisms underlying the adaptations muscle fibers make in response to exercise is not well understood,” Waters said. “What we have shown in our model is that increases in the capillary density occur before a significant change from fast-twitch to slow-twitch fiber type, and furthermore, that changes in levels of the VEGF protein occur before the increased capillary density.”

“Interestingly, capillary growth appears to occur preferentially among fast-twitch fibers, and it is these very fibers that likely change to slow-twitch fibers,” Waters said. “Since exercise has the potential to impact an enormous number of clinical conditions, therapeutic manipulations intended to alter the response to exercise would benefit from a more detailed understanding of what actually happens to muscle as a result of exercise.”

The exact relationship between VEGF, exercise induced angiogenesis, and muscle fiber type adaptation is still not clear and will become the focus of the group’s continuing research. The findings from the current study, however, are providing important temporal and spatial clues to the adaptability process.

“Our data suggests that angiogenesis is one of the key early steps in skeletal muscle adaptation and may be an essential step in the adaptability process,” Waters continued. “This understanding could be crucial for designing new studies that can be performed to inhibit the angiogenic response to exercise in order to directly test the links between angiogenesis and skeletal muscle plasticity.”

 

———————————–
Article adapted by MD Sports from original press release.
———————————–
Contact: Richard Merritt
Duke University Medical Center 

The research team was supported by grants from the American Heart Association and the U.S. Department of Veterans Affairs

 

Researchers in Purdue University’s School of Veterinary Medicine have discovered genetic and drug-treatment methods to arrest the type of muscle atrophy often caused by muscle disuse, as well as aging and diseases such as cancer.
The findings might eventually benefit people who have been injured or suffer from diseases that cause them to be bedridden and lose muscle mass, or sometimes limbs, due to atrophy, said Amber Pond, a research scientist in the school’s Department of Basic Medical Sciences.
“The weight loss and muscle wasting that occurs in patients with cancer or other diseases seriously compromises their well-being and is correlated with a poor chance for recovery,” Pond said. “In addition, muscle weakness caused by atrophy during aging can lead to serious falls and bone loss. Exercise is the most beneficial strategy to treat atrophy. However, many individuals are too ill to adequately participate in exercise programs.
“We’ve found a chemical ‘switch’ in the body that allows us to turn atrophy on, and, from that, we also have learned how to turn atrophy off.”
Findings based on the research, funded in large part by the American Heart Association, are detailed in a study available online today (Wednesday, May 24) in The FASEB Journal, published by the Federation of American Societies for Experimental Biology. The study will be in the journal’s print edition in July.
The research team found atrophy of skeletal muscle in mice could be inhibited with both gene therapy and drug treatment using astemizole (as-TEM-uh-zole), an antihistamine. This new insight has potential in many different areas of research, Pond said.
“We have discovered a direct link between atrophy and a protein in the skeletal muscle,” Pond said. “This led us to develop methods that would block the protein’s ability to cause atrophy. Through drug treatment, we were able to block atrophy, allowing muscle to retain 97 percent of its original fiber size in the face of atrophy.”
Astemizole, which was withdrawn from the market in 2000 because of its potential to cause serious cardiovascular problems, wouldn’t be suitable for use in humans, Pond said. The drug can be used in mice because it doesn’t affect their hearts to the same extent.
“Astemizole administration to humans poses too great a risk,” Pond said. “There’s a need for more study to avoid those side effects, but the key is that we found a protein capable of sensing muscle disuse and initiating atrophy.”
In the drug study, researchers used four groups of mice: a control group, a second group that was given astemizole, and two additional groups in which muscle atrophy was introduced. One of these two groups received astemizole while the second did not. Both of these groups were placed in cages constructed to elevate them so that they were unable to place any weight on their back legs.
“Use of the custom cages to produce atrophy was established in the ’80s for simulation of NASA space flight; you can’t mimic these effects on muscle and bone in cell culture,” said Kevin Hannon, associate professor of developmental anatomy and one of the study’s authors. “The mice were able to move around the cage and eat and drink on their own. We monitored their food and water intake and overall health and ensured that they were playing and eating normally.”
This method allowed the scientists to demonstrate the effects of skeletal muscle atrophy and investigate reasons for the link with the Merg1a protein. The Merg1a protein is a channel that normally passes a small electrical current across the cell.
The researchers implanted a gene into the skeletal muscle that resulted in a mutant form of this protein that combines with the normal protein and stops the current. The researchers found that the mutant protein would inhibit atrophy in mice whose ability to use their back legs was limited.
Because gene therapy is not yet a practical treatment option in humans, the researchers decided to go a step further and stop the function of the protein with astemizole, which is a known “Merg1a channel blocker.” The researchers found that the drug produced basically the same results as the gene therapy. In fact, muscle size increased in mice in the group that were given the drug without any other treatment.
“We are now looking at the differences in the structure of the heart and the skeleton to give us clues on how to specifically target muscles without the cardiac side effects,” Pond said.
###
This research also was partially supported by the U.S. Department of Agriculture and Purdue’s basic medical sciences department.
Writer: Maggie Morris, (765) 494-2432, maggiemorris@purdue.edu
Sources: Amber Pond, (765) 494-6185, pond@purdue.edu 
Kevin Hannon, (765) 494-5949, hannonk@purdue.edu
Related Web sites: 
Purdue School of Veterinary Medicine: http://www.vet.purdue.edu/ 

Researchers in Purdue University’s School of Veterinary Medicine have discovered genetic and drug-treatment methods to arrest the type of muscle atrophy often caused by muscle disuse, as well as aging and diseases such as cancer.

The findings might eventually benefit people who have been injured or suffer from diseases that cause them to be bedridden and lose muscle mass, or sometimes limbs, due to atrophy, said Amber Pond, a research scientist in the school’s Department of Basic Medical Sciences.

“The weight loss and muscle wasting that occurs in patients with cancer or other diseases seriously compromises their well-being and is correlated with a poor chance for recovery,” Pond said. “In addition, muscle weakness caused by atrophy during aging can lead to serious falls and bone loss. Exercise is the most beneficial strategy to treat atrophy. However, many individuals are too ill to adequately participate in exercise programs.

“We’ve found a chemical ‘switch’ in the body that allows us to turn atrophy on, and, from that, we also have learned how to turn atrophy off.”

Findings based on the research, funded in large part by the American Heart Association, are detailed in a study available online today (Wednesday, May 24) in The FASEB Journal, published by the Federation of American Societies for Experimental Biology. The study will be in the journal’s print edition in July.

The research team found atrophy of skeletal muscle in mice could be inhibited with both gene therapy and drug treatment using astemizole (as-TEM-uh-zole), an antihistamine. This new insight has potential in many different areas of research, Pond said.

“We have discovered a direct link between atrophy and a protein in the skeletal muscle,” Pond said. “This led us to develop methods that would block the protein’s ability to cause atrophy. Through drug treatment, we were able to block atrophy, allowing muscle to retain 97 percent of its original fiber size in the face of atrophy.”

Astemizole, which was withdrawn from the market in 2000 because of its potential to cause serious cardiovascular problems, wouldn’t be suitable for use in humans, Pond said. The drug can be used in mice because it doesn’t affect their hearts to the same extent.

“Astemizole administration to humans poses too great a risk,” Pond said. “There’s a need for more study to avoid those side effects, but the key is that we found a protein capable of sensing muscle disuse and initiating atrophy.”

In the drug study, researchers used four groups of mice: a control group, a second group that was given astemizole, and two additional groups in which muscle atrophy was introduced. One of these two groups received astemizole while the second did not. Both of these groups were placed in cages constructed to elevate them so that they were unable to place any weight on their back legs.

“Use of the custom cages to produce atrophy was established in the ’80s for simulation of NASA space flight; you can’t mimic these effects on muscle and bone in cell culture,” said Kevin Hannon, associate professor of developmental anatomy and one of the study’s authors. “The mice were able to move around the cage and eat and drink on their own. We monitored their food and water intake and overall health and ensured that they were playing and eating normally.”

This method allowed the scientists to demonstrate the effects of skeletal muscle atrophy and investigate reasons for the link with the Merg1a protein. The Merg1a protein is a channel that normally passes a small electrical current across the cell.

The researchers implanted a gene into the skeletal muscle that resulted in a mutant form of this protein that combines with the normal protein and stops the current. The researchers found that the mutant protein would inhibit atrophy in mice whose ability to use their back legs was limited.

Because gene therapy is not yet a practical treatment option in humans, the researchers decided to go a step further and stop the function of the protein with astemizole, which is a known “Merg1a channel blocker.” The researchers found that the drug produced basically the same results as the gene therapy. In fact, muscle size increased in mice in the group that were given the drug without any other treatment.

“We are now looking at the differences in the structure of the heart and the skeleton to give us clues on how to specifically target muscles without the cardiac side effects,” Pond said.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Maggie Morris
Purdue University 

This research also was partially supported by the U.S. Department of Agriculture and Purdue’s basic medical sciences department.

Related Web sites: 
Purdue School of Veterinary Medicine: http://www.vet.purdue.edu/ 
FASEB Journal: http://www.fasebj.org/ 

Governor Sonny Perdue signed a proclamation recognizing May as Exercise is Medicine Month in Georgia. Exercise is Medicine is a national program, founded by the American College of Sports Medicine (ACSM) with The Coca-Cola Company, which encourages consumers to speak with their doctors about an appropriate level of exercise, plan their exercise regimen, track it and stick to it.

             Products Related

NitroMax – Energy Shake Lean Weight Formula

Quantity Price Savings
3.9 lb $42.95 $17.00
clear
10 lb $90.00 $23.90
clear
25 lb $159.70 $61.70
 

 

Research News

Negative Energy Balance

By Sandco Staff

University Park, Pa. – Female athletes often lose their menstrual cycle when training strenuously, but researchers have long speculated on whether this infertility was due to low body fat, low weight or exercise itself. Now, researchers have shown that the cause of athletic amenorrhea is more likely a negative energy balance caused by increasing exercise without increasing food intake.

“A growing proportion of women are susceptible to losing their menstrual cycle when exercising strenuously,” says Dr. Nancy I. Williams, assistant professor of kineseology and physiology at Penn State. “If women go six to 12 months without having a menstrual cycle, they could show bone loss. Bone densities in some long distance runners who have gone for a prolonged time period without having normal menstrual cycles can be very low.”

In studies done with monkeys, which show menstrual cyclicity much like women, researchers showed that low energy availability associated with strenuous exercise training plays an important role in causing exercise-induced amenorrhea. These researchers, working at the University of Pittsburgh, published findings in the Journal of Clinical Endocrinology and Metabolism showing that exercise-induced amenorrhea was reversible in the monkeys by increasing food intake while the monkeys still exercised.

Williams worked with Judy L. Cameron, associate professor of psychiatry and cell biology and physiology at the University of Pittsburgh. Dana L. Helmreich and David B. Parfitt, then graduate students, and Anne Caston-Balderrama, at that time a post-doctoral fellow at the University of Pittsburgh, were also part of the research team. The researchers decided to look at an animal model to understand the causes of exercise-induced amenorrhea because it is difficult to closely control factors, such as eating habits and exercise, when studying humans. They chose cynomolgus monkeys because, like humans, they have a menstrual cycle of 28 days, ovulate in mid-cycle and show monthly periods of menses.

“It is difficult to obtain rigorous control in human studies, short of locking people up,” says Williams.

Previous cross-sectional studies and short-term studies in humans had shown a correlation between changes in energy availability and changes in the menstrual cycle, but those studies were not definitive.

There was also some indication that metabolic states experienced by strenuously exercising women were similar to those in chronically calorie restricted people. However, whether the increased energy utilization which occurs with exercise or some other effect of exercise caused exercise-induced reproductive dysfunction was unknown.

“The idea that exercise or something about exercise is harmful to females was not definitively ruled out,” says Williams. “That exercise itself is harmful would be a dangerous message to put out there. We needed to look at what it was about exercise that caused amenorrhea, what it was that suppresses ovulation. To do that, we needed a carefully controlled study.”

After the researchers monitored normal menstrual cycles in eight monkeys for a few months, they trained the monkeys to run on treadmills, slowly increasing their daily training schedule to about six miles per day. Throughout the training period the amount of food provided remained the standard amount for a normal 4.5 to 7.5 pound monkey, although the researchers note that some monkeys did not finish all of their food all of the time.

The researchers found that during the study “there were no significant changes in body weight or caloric intake over the course of training and the development of amenorrhea.” While body weight did not change, there were indications of an adaptation in energy expenditure. That is, the monkeys’ metabolic hormones also changed, with a 20 percent drop in circulating thyroid hormone, suggesting that the suppression of ovulation is more closely related to negative energy balance than to a decrease in body weight.

To seal the conclusion that a negative energy balance was the key to exercise-induced amenorrhea, the researchers took four of the previous eight monkeys and, while keeping them on the same exercise program, provided them with more food than they were used to. All the monkeys eventually resumed normal menstrual cycles. However, those monkeys who increased their food consumption most rapidly and consumed the most additional food, resumed ovulation within as little as 12 to 16 days while those who increased their caloric intake more slowly, took almost two months to resume ovulation.

Williams is now conducting studies on women who agree to exercise and eat according to a prescribed regimen for four to six months. She is concerned because recreational exercisers have the first signs of ovulatory suppression and may easily be thrust into amenorrhea if energy availability declines. Many women that exercise also restrict their calories, consciously or unconsciously.

“Our goal is to test whether practical guidelines can be developed regarding the optimal balance between calories of food taken in and calories expended through exercise in order to maintain ovulation and regular menstrual cycles,” says Williams. “This would then ensure that estrogen levels were also maintained at healthy levels. This is important because estrogen is a key hormone in the body for many physiological systems, influencing bone strength and cardiovascular health, not just reproduction.”

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: A’ndrea Elyse Messer
Penn State

It’s an inevitable truth: as we get older, our muscles deteriorate and we become weaker. Not only can this be an immensely frustrating change, but it can also have many other, more serious implications. We become clumsier and begin to have more falls, often resulting in broken bones or even more severe injuries. There is wide interest in this phenomenon, but to date, the majority of research has focussed on therapies for older patients with advanced symptoms. Now one study, led by Dr Alexandra Sänger from the University of Salzburg, is taking a new approach: scientists are examining the effects of different exercise regimes in menopausal women, with the aim of developing new strategies for delaying and reducing the initial onset of age related muscle deterioration. Results will be presented on Monday 7th July at the Society for Experimental Biology’s Annual Meeting in Marseille [Poster Session A5].

Dr Sänger’s research group has investigated two particular methods of physical training. Hypertrophy resistance training is a traditional approach designed to induce muscle growth whereas ‘SuperSlow®’ is a more recently devised system which involves much slower movement and fewer repetitions of exercises, and was originally introduced especially for beginners and for rehabilitation. “Our results indicate that both methods increase muscle mass at the expense of connective and fatty tissue, but contrary to expectations, the SuperSlow® method appears to have the greatest effect,” reveals Dr Sänger. “These findings will be used to design specific exercise programmes for everyday use to reduce the risk of injury and thus significantly contribute to a better quality of life in old age.”

The study focussed on groups of menopausal women aged 45-55 years, the age group in which muscle deterioration first starts to become apparent. Groups undertook supervised regimes over 12 weeks, based on each of the training methods. To see what effect the exercise had, thigh muscle biopsies were taken at the beginning and end of the regimes, and microscopically analysed to look for changes in the ratio of muscle to fatty and connective tissue, the blood supply to the muscle, and particularly for differences in the muscle cells themselves. “The results of our experiments have significantly improved our understanding of how muscles respond to different forms of exercise,” asserts Dr Sänger. “We believe that the changes that this new insight can bring to current training systems will have a considerable effect on the lives of both menopausal and older

———————————–
Article adapted by MD Sports from original press release.
———————————–

Notes to editors

  • Hypertrophy resistance training is a method of strength training that is designed to induce muscle growth, also known as hypertrophy.
  • SuperSlow® resistance training was developed by Ken Hutchins and is based on the same principle as hypertrophy resistance training, but involves slower movement and fewer repetitions of exercises, which is thought to improve the quality of muscle contraction and thereby strength.

Contact: Holly Astley
Society for Experimental Biology