Posts Tagged ‘mens health’

Duke University Medical Center researchers have identified the skeletal muscle changes that occur in response to endurance exercise and have better defined the role of vascular endothelial growth factor (VEGF) in creating new blood vessels, known as angiogenesis, in the process.

VEGF is a protein known to trigger blood vessel growth by activating numerous genes involved in angiogenesis.
The researchers’ new insights could provide a roadmap for medical investigators as they seek to use VEGF in treating human conditions characterized by lack of adequate blood flow, such as coronary artery disease or peripheral arterial disease.
Using mice as animal models, the researchers found that exercise initially stimulates the production of VEGF, which then leads to an increase in the number of capillaries within a specific muscle fiber type, ultimately leading to an anaerobic to aerobic change in the muscle fibers supplied by those vessels. The VEGF gene produces a protein that is known to trigger blood vessel growth.
The results of the Duke experiments were presented by cardiologist Richard Waters, M.D., Nov. 8, 2004, at the American Heart Association’s annual scientific sessions in New Orleans.
“It is known that exercise can improve the symptoms of peripheral arterial disease in humans and it has been assumed that angiogenesis played a role in this improvement,” Waters said. “However, the clinical angiogenesis trials to date utilizing VEGF have been marginally successful and largely disappointing, so we felt it would be better at this point to return to animal studies in an attempt to better understand the angiogenic process.”
The Duke team performed their experiments using a mouse model of voluntary exercise. This experimental approach is important, they explained, because most skeletal muscle adaptation studies utilize electrical stimulation of the muscle, which is much less physiologic and does not as closely mimic what would be expected in human exercise.
When placed in the dark with a running wheel, mice will instinctively run, the researchers said. In the Duke experiments, 41 out of 42 mice “ran” up to seven miles each night. At regular intervals over a 28-day period, the researchers then performed detailed analysis of capillary growth and the subsequent changes in muscle fiber type and compared these findings to sedentary mice.
Mammalian muscle is generally made up of two different fiber types – slow-twitch fibers requiring oxygen to function, and the fast-twitch fibers, which function in the absence of oxygen by breaking down glucose. Because of their need for oxygen, slow-twitch fibers tend to have a higher density of capillaries.
“Exercise training is probably the most widely utilized physiological stimulus for skeletal muscle, but the mechanisms underlying the adaptations muscle fibers make in response to exercise is not well understood,” Waters said. “What we have shown in our model is that increases in the capillary density occur before a significant change from fast-twitch to slow-twitch fiber type, and furthermore, that changes in levels of the VEGF protein occur before the increased capillary density.”
“Interestingly, capillary growth appears to occur preferentially among fast-twitch fibers, and it is these very fibers that likely change to slow-twitch fibers,” Waters said. “Since exercise has the potential to impact an enormous number of clinical conditions, therapeutic manipulations intended to alter the response to exercise would benefit from a more detailed understanding of what actually happens to muscle as a result of exercise.”
The exact relationship between VEGF, exercise induced angiogenesis, and muscle fiber type adaptation is still not clear and will become the focus of the group’s continuing research. The findings from the current study, however, are providing important temporal and spatial clues to the adaptability process.
“Our data suggests that angiogenesis is one of the key early steps in skeletal muscle adaptation and may be an essential step in the adaptability process,” Waters continued. “This understanding could be crucial for designing new studies that can be performed to inhibit the angiogenic response to exercise in order to directly test the links between angiogenesis and skeletal muscle plasticity.”
###
The research team was supported by grants from the American Heart Association and the U.S. Department of Veterans Affairs.
Other members of the Duke team were Ping Li, Brian Annex, M.D., and Zhen Yan, Ph.D. Svein Rotevatn, Haukeland University Hospital, Bergen, Norway, was also a member of the team.

Duke University Medical Center researchers have identified the skeletal muscle changes that occur in response to endurance exercise and have better defined the role of vascular endothelial growth factor (VEGF) in creating new blood vessels, known as angiogenesis, in the process.

VEGF is a protein known to trigger blood vessel growth by activating numerous genes involved in angiogenesis.

The researchers’ new insights could provide a roadmap for medical investigators as they seek to use VEGF in treating human conditions characterized by lack of adequate blood flow, such as coronary artery disease or peripheral arterial disease.

Using mice as animal models, the researchers found that exercise initially stimulates the production of VEGF, which then leads to an increase in the number of capillaries within a specific muscle fiber type, ultimately leading to an anaerobic to aerobic change in the muscle fibers supplied by those vessels. The VEGF gene produces a protein that is known to trigger blood vessel growth.

The results of the Duke experiments were presented by cardiologist Richard Waters, M.D., Nov. 8, 2004, at the American Heart Association’s annual scientific sessions in New Orleans.

“It is known that exercise can improve the symptoms of peripheral arterial disease in humans and it has been assumed that angiogenesis played a role in this improvement,” Waters said. “However, the clinical angiogenesis trials to date utilizing VEGF have been marginally successful and largely disappointing, so we felt it would be better at this point to return to animal studies in an attempt to better understand the angiogenic process.”

The Duke team performed their experiments using a mouse model of voluntary exercise. This experimental approach is important, they explained, because most skeletal muscle adaptation studies utilize electrical stimulation of the muscle, which is much less physiologic and does not as closely mimic what would be expected in human exercise.

When placed in the dark with a running wheel, mice will instinctively run, the researchers said. In the Duke experiments, 41 out of 42 mice “ran” up to seven miles each night. At regular intervals over a 28-day period, the researchers then performed detailed analysis of capillary growth and the subsequent changes in muscle fiber type and compared these findings to sedentary mice.

Mammalian muscle is generally made up of two different fiber types – slow-twitch fibers requiring oxygen to function, and the fast-twitch fibers, which function in the absence of oxygen by breaking down glucose. Because of their need for oxygen, slow-twitch fibers tend to have a higher density of capillaries.

“Exercise training is probably the most widely utilized physiological stimulus for skeletal muscle, but the mechanisms underlying the adaptations muscle fibers make in response to exercise is not well understood,” Waters said. “What we have shown in our model is that increases in the capillary density occur before a significant change from fast-twitch to slow-twitch fiber type, and furthermore, that changes in levels of the VEGF protein occur before the increased capillary density.”

“Interestingly, capillary growth appears to occur preferentially among fast-twitch fibers, and it is these very fibers that likely change to slow-twitch fibers,” Waters said. “Since exercise has the potential to impact an enormous number of clinical conditions, therapeutic manipulations intended to alter the response to exercise would benefit from a more detailed understanding of what actually happens to muscle as a result of exercise.”

The exact relationship between VEGF, exercise induced angiogenesis, and muscle fiber type adaptation is still not clear and will become the focus of the group’s continuing research. The findings from the current study, however, are providing important temporal and spatial clues to the adaptability process.

“Our data suggests that angiogenesis is one of the key early steps in skeletal muscle adaptation and may be an essential step in the adaptability process,” Waters continued. “This understanding could be crucial for designing new studies that can be performed to inhibit the angiogenic response to exercise in order to directly test the links between angiogenesis and skeletal muscle plasticity.”

 

———————————–
Article adapted by MD Sports from original press release.
———————————–
Contact: Richard Merritt
Duke University Medical Center 

The research team was supported by grants from the American Heart Association and the U.S. Department of Veterans Affairs

Advertisements

Governor Sonny Perdue signed a proclamation recognizing May as Exercise is Medicine Month in Georgia. Exercise is Medicine is a national program, founded by the American College of Sports Medicine (ACSM) with The Coca-Cola Company, which encourages consumers to speak with their doctors about an appropriate level of exercise, plan their exercise regimen, track it and stick to it.

ATHENS, Ohio – Men over 60 may be able to increase their strength by as much as 80 percent by performing intense weight training exercises, according to physiologists involved in studies of the health benefits of weight lifting. The researchers also have found that older men gain strength at the same rate as men in their 20s.

In a study of 18 men ages 60 to 75, Ohio University physiologists found that subjects who participated in a 16-week, high-intensity resistence training program on average were 50 percent to 80 percent stronger by the end of the study. None of the participants had engaged in weight lifting prior to the study. Researchers also observed improvements in the seniors’ muscle tone, aerobic capacity and cholesterol profile.

These are some of the latest findings from a decades-long examination of the impact of exercise on the health of men and women of all ages. When researchers compared the strength gains of the elderly participants in this study to findings from other studies they’ve done of college-age men, they found that changes in strength and muscle size were similar in both age groups. The findings were published in a recent issue of the Journal of Gerontology.

“There have been a number of research projects that have come out over the years that suggest there is no age limitation to getting stronger from resistance training,” said Robert Staron, co-author of this study and an associate professor of anatomy in the university’s College of Osteopathic Medicine. “It’s become obvious that it’s important to maintain a certain amount of muscle mass as we age.”

This new study also suggests that elderly men can handle heavy workloads over a long period of time. Participants – who all were in good health and closely monitored during testing and training – performed leg presses, half squats and leg extensions twice a week to exercise the lower body. When the men began the study, they were able to leg press about 375 pounds on average. After the 16-week period, they could take on about 600 pounds. Studies elsewhere have involved low-intensity exercises over a shorter term.

In addition to the increase in strength, researchers found that weight lifting had a beneficial impact on the participants’ cardiovascular system. Tests on an exercise treadmill showed that their bodies used oxygen more efficiently after weight training.

“The individuals run until they are completely exhausted, and it took longer for them to reach that point after resistance training,” Staron said.

Blood samples taken before and after weight training also showed favorable changes in participants’ overall cholesterol profiles, he said, including increases in HDL cholesterol levels and decreases in LDL cholesterol levels.

Losing muscle tone and strength is not uncommon for many senior citizens, Staron said, but this research suggests that a lack of physical exercise can contribute to the problem.

“Certainly, inactivity does play a role in contributing to the decrease in muscle mass,” Staron said. “If we can maintain a certain level of strength through exercise, our quality of life should be better as we age.”

Before beginning a weight lifting regimen, it’s a good idea to consult a physician, Staron advised, adding that it’s also important to learn proper weight lifting techniques. Staron and his colleagues now have turned their attention to how certain weight training routines impact young people.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Andrea Gibson
Ohio University

Collaborators on this project are Fredrick Hagerman, Robert Hikida and Thomas Murray of the College of Osteopathic Medicine, former graduate student Seamus Walsh, Roger Gilders of the College of Health and Human Services, Kumika Toma of the College of Arts and Sciences and Kerry Ragg of the Student Health Service.

Genetic research into athletic ability should be encouraged for its potential benefits in both sport and public health, a leading group of scientists meeting at the University of Bath said today.

Genetic research into athletic ability should be encouraged for its potential benefits in both sport and public health, a leading group of scientists meeting at the University of Bath said today.

However, ethical concerns, such as whether seeking information about differences between ethnic groups could be perceived as racist research, need to be properly addressed, they warn.

Their recommendations are published in a ‘position stand’ on genetic research and testing launched at the British Association of Sport & Exercise Sciences annual meeting today.

They call for more genetic research in the sport and exercise sciences because of the anticipated benefits for public health, but want researchers to take a more active role in debating the implications of their work with the public.

“If a powerful muscle growth gene was identified, on the one hand this could help develop training programmes that increase muscle size and strength in athletes, but even more importantly the knowledge could be used to develop exercise programmes or drugs to combat muscle wasting in old age,” said Dr Alun Williams from Manchester Metropolitan University, one of the report’s authors.

“We, as scientists investigating genetics, acknowledge a public concern about some genetic research and we believe scientists need to engage in public in debates about the potential benefits of their research.

“Research into the athletic success of East African distance runners or sprinters of West African ancestry might be perceived as unethical.

“But understanding the limits of human exercise capacity in sport could lead to the development of treatments for a range of diseases like cancer and cardiovascular disease.”

The potential applications of genetic testing in sport and exercise also raise some ethical concerns, for example in identifying potential athletic ability before birth.

An Australian company already offers the first genetic performance test (for the ACTN3 gene) which has been linked to sprint and power performance.

The report authors are sceptical about whether this test is useful but anticipate that more advanced versions of these tests will be available in future.

“We are not yet at a point where we can identify a potential future Olympic champion from genetic tests but we may not be very far away,” said Dr Williams, who wrote the report with Drs Henning Wackerhage (Aberdeen University), Andy Miah (University of Paisley), Roger Harris (University of Chichester) and Hugh Montgomery (University College London).

They highlight two dangers of genetic performance tests. Firstly, genetic performance tests might later be linked to disease. For example, a muscle growth gene may later be linked to cancer growth.

“Not all people may want to know, while young that they are at increased risk of cancer by early middle age, but they might inadvertently become aware of that just because they had a ‘sport gene’ test,” said Dr Williams.

Secondly, genetic performance tests can be performed even before birth and this may lead to the selection of foetuses or to abortions based on athletic potential.

The report recommends genetic counselling and that the testing should be confined to mature individuals who fully understand the relevant issues.

Genetic tests might also be used to screen for health risks during sport such as genes that are linked to sudden cardiac death.

Genetic tests for sudden cardiac death are already available but the report recommends that such testing should not be enforced on athletes.

Problems with mandatory testing are highlighted by the case of the basketball player Eddy Curry, who had an irregular heart beat.

Curry was asked by his club, the Chicago Bulls, to perform a predictive genetic test for a heart condition. The athlete refused and was traded to the New York Knicks who did not make such a demand.

In future, genetic tests might be used to identify those that respond with the biggest drop in cholesterol, blood pressure or glucose to exercise.

In a personalised medicine approach, such tests could be used to select subjects for therapeutic exercise programmes but scientists are concerned that this might undermine the ‘exercise for all’ message that already seems difficult to get across to the public.

The authors say that genetic testing might also be used to detect gene doping, which may be a real threat by the time of the London Olympics in 2012, or to show that positive doping tests are the result of a genetic mutation in an athlete.

The report recommends that genetic testing should be used for anti-doping testing as long as the genetic samples are destroyed after testing.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Andrew McLaughlin
University of Bath