Archive for the ‘High School’ Category

WESTCHESTER, Ill. – Athletes who get an extra amount of sleep are more likely to improve their performance in a game, according to a research abstract presented at the 21st Annual Meeting of the Associated Professional Sleep Societies (APSS).

The study, authored by Cheri Mah of Stanford University, was conducted on six healthy students on the Stanford men’s basketball team, who maintained their typical sleep-wake patterns for a two-week baseline followed by an extended sleep period in which they obtained as much extra sleep as possible. To assess improvements in athletic performance, the students were judged based on their sprint time and shooting percentages.

Significant improvements in athletic performance were observed, including faster sprint time and increased free-throws. Athletes also reported increased energy and improved mood during practices and games, as well as a decreased level of fatigue.

“Although much research has established the detrimental effects of sleep deprivation on cognitive function, mood and performance, relatively little research has investigated the effects of extra sleep over multiple nights on these variables, and even less on the specific relationship between extra sleep and athletic performance. This study illuminated this latter relationship and showed that obtaining extra sleep was associated with improvements in indicators of athletic performance and mood among members of the men’s basketball team.”

The amount of sleep a person gets affects his or her physical health, emotional well-being, mental abilities, productivity and performance. Recent studies associate lack of sleep with serious health problems such as an increased risk of depression, obesity, cardiovascular disease and diabetes.
———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jim Arcuri
American Academy of Sleep Medicine 

Experts recommend that adults get between seven and eight hours of sleep each night to maintain good health and optimum performance.

Persons who think they might be suffering from a sleep disorder are encouraged to consult with their primary care physician, who will refer them to a sleep specialist.

The annual SLEEP meeting brings together an international body of 5,000 leading researchers and clinicians in the field of sleep medicine to present and discuss new findings and medical developments related to sleep and sleep disorders.

More than 1,000 research abstracts will be presented at the SLEEP meeting, a joint venture of the American Academy of Sleep Medicine and the Sleep Research Society. The four-day scientific meeting will bring to light new findings that enhance the understanding of the processes of sleep and aid the diagnosis and treatment of sleep disorders such as insomnia, narcolepsy and sleep apnea.

University Park, Pa. – Female athletes often lose their menstrual cycle when training strenuously, but researchers have long speculated on whether this infertility was due to low body fat, low weight or exercise itself. Now, researchers have shown that the cause of athletic amenorrhea is more likely a negative energy balance caused by increasing exercise without increasing food intake.

“A growing proportion of women are susceptible to losing their menstrual cycle when exercising strenuously,” says Dr. Nancy I. Williams, assistant professor of kineseology and physiology at Penn State. “If women go six to 12 months without having a menstrual cycle, they could show bone loss. Bone densities in some long distance runners who have gone for a prolonged time period without having normal menstrual cycles can be very low.”

In studies done with monkeys, which show menstrual cyclicity much like women, researchers showed that low energy availability associated with strenuous exercise training plays an important role in causing exercise-induced amenorrhea. These researchers, working at the University of Pittsburgh, published findings in the Journal of Clinical Endocrinology and Metabolism showing that exercise-induced amenorrhea was reversible in the monkeys by increasing food intake while the monkeys still exercised.

Williams worked with Judy L. Cameron, associate professor of psychiatry and cell biology and physiology at the University of Pittsburgh. Dana L. Helmreich and David B. Parfitt, then graduate students, and Anne Caston-Balderrama, at that time a post-doctoral fellow at the University of Pittsburgh, were also part of the research team. The researchers decided to look at an animal model to understand the causes of exercise-induced amenorrhea because it is difficult to closely control factors, such as eating habits and exercise, when studying humans. They chose cynomolgus monkeys because, like humans, they have a menstrual cycle of 28 days, ovulate in mid-cycle and show monthly periods of menses.

“It is difficult to obtain rigorous control in human studies, short of locking people up,” says Williams.

Previous cross-sectional studies and short-term studies in humans had shown a correlation between changes in energy availability and changes in the menstrual cycle, but those studies were not definitive.

There was also some indication that metabolic states experienced by strenuously exercising women were similar to those in chronically calorie restricted people. However, whether the increased energy utilization which occurs with exercise or some other effect of exercise caused exercise-induced reproductive dysfunction was unknown.

“The idea that exercise or something about exercise is harmful to females was not definitively ruled out,” says Williams. “That exercise itself is harmful would be a dangerous message to put out there. We needed to look at what it was about exercise that caused amenorrhea, what it was that suppresses ovulation. To do that, we needed a carefully controlled study.”

After the researchers monitored normal menstrual cycles in eight monkeys for a few months, they trained the monkeys to run on treadmills, slowly increasing their daily training schedule to about six miles per day. Throughout the training period the amount of food provided remained the standard amount for a normal 4.5 to 7.5 pound monkey, although the researchers note that some monkeys did not finish all of their food all of the time.

The researchers found that during the study “there were no significant changes in body weight or caloric intake over the course of training and the development of amenorrhea.” While body weight did not change, there were indications of an adaptation in energy expenditure. That is, the monkeys’ metabolic hormones also changed, with a 20 percent drop in circulating thyroid hormone, suggesting that the suppression of ovulation is more closely related to negative energy balance than to a decrease in body weight.

To seal the conclusion that a negative energy balance was the key to exercise-induced amenorrhea, the researchers took four of the previous eight monkeys and, while keeping them on the same exercise program, provided them with more food than they were used to. All the monkeys eventually resumed normal menstrual cycles. However, those monkeys who increased their food consumption most rapidly and consumed the most additional food, resumed ovulation within as little as 12 to 16 days while those who increased their caloric intake more slowly, took almost two months to resume ovulation.

Williams is now conducting studies on women who agree to exercise and eat according to a prescribed regimen for four to six months. She is concerned because recreational exercisers have the first signs of ovulatory suppression and may easily be thrust into amenorrhea if energy availability declines. Many women that exercise also restrict their calories, consciously or unconsciously.

“Our goal is to test whether practical guidelines can be developed regarding the optimal balance between calories of food taken in and calories expended through exercise in order to maintain ovulation and regular menstrual cycles,” says Williams. “This would then ensure that estrogen levels were also maintained at healthy levels. This is important because estrogen is a key hormone in the body for many physiological systems, influencing bone strength and cardiovascular health, not just reproduction.”

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: A’ndrea Elyse Messer
Penn State

Research news from Journal of Mass Spectrometry

A new mass spectrometry test can help sports anti-drug doping officials to detect whether an athlete has used drugs that boost naturally occurring steroid levels. The test is more sensitive compared to previous alternatives, more capable of revealing specific suspicious chemical in the body, faster to perform, and could be run on standard drug-screening laboratory equipment. The new test is announced in a special issue of the Journal of Mass Spectrometry that concentrates on detecting drugs in sports.

One of the roles of the masculinising hormone testosterone is to increase muscle size and strength. Taking extra testosterone, or taking a chemical that the body can use to create extra testosterone, could therefore enhance an athlete’s performance. For this reason taking it is banned by the World Anti-Doping Agency (WADA).

The exact level of testosterone varies considerably between different people, so simply measuring total testosterone in an athlete’s urine can not show whether he or she has deliberately taken extra. There is, however, a second chemical in the body, epitestosterone, which is normally present in approximately equal proportions to testosterone. Comparing the ratio of testosterone to epitestosterone can then indicate whether testosterone or a precursor has been taken.

The problem is that it is not always easy to measure these two substances, particularly as they are only present in urine at very low concentrations.

A team of scientists the Sports Medicine Research and Testing Laboratory at the University of Utah have developed a test that makes use of liquid chromatography-tandem mass spectrometry. This method has incredibly high sensitivity (down to 1 ng/ml) and increases the power with which officials can search for both testosterone and epitestosterone within a sample.

“Our system means that we can determine the testosterone/epitestosterone ratio in a sample with greater confidence, and therefore be in a better position to spot doping violations without falsely accusing innocent athletes,” says lead investigator Dr Jonathan Danaceau.

“Not only is the test more sensitive, it is also faster to perform,” says colleague Scott Morrison.

“Having this sort of test available makes cheating harder and lets us take one more step towards enabling free and fair competition,” says Laboratory Director Dr Matthew Slawson.

This paper is part of a special issue for the Olympic Games from the Journal of Mass Spectrometry which focuses of drug use in sport. The issue is available free of charge online for one month at http://www.interscience.wiley.com/journal/jms. The other articles publishing in this issue are:

 

  • History of Mass Spectrometry at Olympic Games (DOI: 10.1002/jms.1445)
  • Nutritional supplements cross-contaminated and faked with doping substances (DOI: 10.1002/jms.1452)
  • Hair analysis of anabolic steroids in connection with doping control results from horse samples (DOI: 10.1002/jms.1446)
  • Mass spectrometric determination of Gonadotrophin releasing hormone (GnRH) in human urine for doping control purposes by means of LC-ESI-MS/MS (DOI: 10.1002/jms.1438)
  • Liquid chromatographic-mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: method validation and inter-laboratory comparison (DOI: 10.1002/jms.1434)
  • Mass Spectrometry of Selective Androgen Receptor Modulators (DOI: 10.1002/jms.1438)
  • Can glycans unveil the origin of glycoprotein hormones? – human chorionic gonadotropin as an example (DOI: 10.1002/jms.1448)
  • A High-Throughput Multicomponent Screening Method for Diuretics, Masking Agents, Central Nervous System Stimulants and Opiates in Human Urine by UPLC-MS/MS (DOI: 10.1002/jms.1436)
  • The application of carbon isotope ratio mass spectrometry to doping control (DOI: 10.1002/jms.1437)
  • Identification of zinc-alpha-2-glycoprotein binding to clone ae7a5 anti-human epo antibody by means of nano-hplc and high-resolution highmass accuracy esi-ms/ms (DOI: 10.1002/jms.1444)
  • Low LC-MS/MS Detection of Glycopeptides Released from pmol Levels of Recombinant Erythropoietin using Nanoflow HPLC-Chip Electrospray Ionization (DOI: 10.1002/jms.1439)
  • Introduction of HPLC/Orbitrap mass spectrometry as screening method for doping control (DOI: 10.1002/jms.1447)

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jennifer Beal
Wiley-Blackwell

University Park, Pa. — Girls and boys are now equally caught up in the social pressure for a muscular body image currently lauded in popular culture. A Penn State researcher contends those pressures are leading girls and boys down unhealthy avenues such as the misuse of anabolic steroids.

“Young girls have always had to struggle against the media stereotypes of stick-thin models or voluptuous sexuality, but with the rising popularity of women sports, girls are bombarded with buffed body images,” says Dr. Charles Yesalis, professor of health policy and administration, and exercise and sports science at Penn State, and editor of the newest edition of the book “Anabolic Steroids in Sports and Exercise.” “Now, young boys face pop culture musclemen like The Rock and Steve Austin, given the influence of professional wrestling shows.”

“The current film ‘Charlie’s Angels’ sports karate-kicking women in cool clothes,” he added. “Today’s children look with envy at the physiques of actors Arnold Schwarzenegger, Jean-Claude Van Damme, Wesley Snipes, and Linda Hamilton, whose roles call for a muscular build. Hollywood stars are openly taking Human Growth Hormone (HGH) injections to combat aging.”

In addition, children are entering competitive sports at younger ages and many working families have children signed up in two or three sports. Parents, coaches and young athletes are facing growing violence in amateur athletics. The pressure to win at all costs continues to weigh heavily on children, Yesalis notes.

The concern is that many youths will take shortcuts to achieving a muscular build by using anabolic steroids. Female athletes also are pressured to achieve low body fat to excel in their sport. The Penn State researcher has seen evidence that the pressures are reaching down to young children. For example, the book cites figures from the Monitoring The Future Study, a national-level epidemiological survey conducted annually since 1975. Approximately 50,000 8th, 10th and 12 graders are surveyed each year.

The MTF data shows that during the 1990s, anabolic steroid use among 12 graders –both boys and girls – rose to an all-time high with more than 500,000 adolescents having cycled – an episode of use of 6 to 12 weeks – during their lifetime. And the percentage of girls alone doubled in the same period.

A 1998 study of 965 youngsters at four Massachusetts middle schools found that 2.7 percent admitted to taking illegal steroids for better sports performance. That included some boys and girls as young as 10 years old. “This year’s Olympic doping scandals and the epidemic of anabolic steroids in professional baseball just glorify and justify steroids to impressionable youths,” Yesalis notes. “The use of anabolic steroids has cascaded down from the Olympic, professional and college levels to high schools and junior high schools and now middle schools for athletes and non-athletes alike. ”

“Anabolic steroids are made to order for a female wanting to attain a lean athletic body. While most drug abuse has outcomes that tend to discourage use, females who use anabolic steroids may experience a decrease in body fat, increased muscle size and strength, and enhanced sports performance,” he says.

Girls and boys misusing anabolic steroids may win approval and rewards from parents, coaches and peers, but don’t realize there are long-term negative effects on their health, particularly girls, according to Yesalis. Young girls face potential permanent side effects of male hair growth or baldness, deepening of the voice, the enlargement of the clitoris as well as the known risks of heart and liver diseases.

Published by Human Kinetics, the book incorporates the latest research, experience and insights of 15 experts on the scientific, clinical, historical, legal and other aspects of steroid abuse and drug testing. New information looks at the effects of steroids on health, particularly that of women.

This year, trials of East German doctors, coaches and officials reveal records of systematic doping of young athletes without their own or parents’ knowledge. In 1974, officials’ plan to turn the tiny Communist nation into a superpower in sports included giving performance-enhancing drugs to all competing athletes including children as young as 10 years old. The indictments included 142 former East German athletes who now complain of health problems. In media reports, several female athletes report incidents of miscarriages, liver tumor, gynecological problems and enlarged heart, all showing up decades after the steroid misuse.

“Our society’s current strategy for dealing with the abuse of anabolic steroids in sport primarily involves testing, law enforcement and education,” Yesalis says. “But our efforts to deal with this problem have not been very successful. Unless we deal with the social environment that rewards winning at all costs and an unrealistic physical appearance, we won’t even begin to address the problem.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Vicki Fong
Penn State

Neuroscience researchers at the Duke-NUS Graduate Medical School in Singapore have shown for the first time what happens to the visual perceptions of healthy but sleep-deprived volunteers who fight to stay awake, like people who try to drive through the night.

The scientists found that even after sleep deprivation, people had periods of near-normal brain function in which they could finish tasks quickly. However, this normalcy mixed with periods of slow response and severe drops in visual processing and attention, according to their paper, published in the Journal of Neuroscience on May 21.

“Interestingly, the team found that a sleep-deprived brain can normally process simple visuals, like flashing checkerboards. But the ‘higher visual areas’ – those that are responsible for making sense of what we see – didn’t function well,” said Dr. Michael Chee, lead author and professor at the Neurobehavioral Disorders Program at Duke-NUS. “Herein lies the peril of sleep deprivation.”

The research team, including colleagues at the University of Michigan and University of Pennsylvania, used magnetic resonance imaging to measure blood flow in the brain during speedy normal responses and slow “lapse” responses. The study was funded by grants from the DSO National Laboratories in Singapore, the National Institutes of Health, the National Institute on Drug Abuse, the NASA Commercialization Center, and the Air Force Office of Scientific Research.

Study subjects were asked to identify letters flashing briefly in front of them. They saw either a large H or S, and each was made up of smaller Hs or Ss. Sometimes the large letter matched the smaller letters; sometimes they didn’t. Scientists asked the volunteers to identify either the smaller or the larger letters by pushing one of two buttons.

During slow responses, sleep-deprived volunteers had dramatic decreases in their higher visual cortex activity. At the same time, as expected, their frontal and parietal ‘control regions’ were less able to make their usual corrections.

Scientists also could see brief failures in the control regions during the rare lapses that volunteers had after a normal night’s sleep. However, the failures in visual processing were specific only to lapses that occurred during sleep deprivation.

The scientists theorize that this sputtering along of cognition during sleep deprivation shows the competing effects of trying to stay awake while the brain is shutting things down for sleep. The brain ordinarily becomes less responsive to sensory stimuli during sleep, Chee said.

This study has implications for a whole range of people who have to struggle through night work, from truckers to on-call doctors. “The periods of apparently normal functioning could give a false sense of competency and security when in fact, the brain’s inconsistency could have dire consequences,” Chee said.

“The study task appeared simple, but as we showed in previous work, you can’t effectively memorize or process what you see if your brain isn’t capturing that information,” Chee said. “The next step in our work is to see what we might do to improve things, besides just offering coffee, now that we have a better idea where the weak links in the system are.”

 

—————————-
Article adapted by MD Sports from original press release.
—————————-

Contact: Mary Jane Gore
Duke University Medical Center

Other authors of the study include Jiat Chow Tan, Hui Zheng, and Sarayu Parimal of the Cognitive Neuroscience Lab at the Duke-NUS Graduate Medical School; Daniel Weissman of the University of Michigan Psychology Department; David Dinges of the University of Pennsylvania School of Medicine; and Vitali Zagorodnov of the Computer Engineering Department of the Nanyang Technological University in Singapore.

Concussions can happen to any athlete—male or female—in any sport. Concussions are a type of traumatic brain injury (TBI), caused by a blow or jolt to the head that can range from mild to severe and can disrupt the way the brain normally works.  

  • A concussion can occur when an athlete receives a traumatic force to the head or upper body that causes the brain to shake inside of the skull.  The injury is defined as a concussion when it causes a change in mental status such as loss of consciousness, amnesia, disorientation, confusion or mental fogginess.
  • Between 1.4 and 3.6 million sports and recreation-related concussions occur each year, with the majority happening at the high school level, according to the Center for Disease Control and Prevention.  Because many mild concussions go undiagnosed and unreported, it is difficult to estimate the rate of concussion in any sport, but studies estimate that at least 10 to 20 percent of all athletes involved in contact sports have a concussion each season
  • Because no two concussions are exactly alike and symptoms are not always definite, the injury’s severity, effects and recovery are sometimes difficult to determine.  The decision to allow the athlete to return to the game is not always straightforward, although research has shown that until a concussed brain is completely healed, the brain is likely vulnerable to further injury.  Thus, the critical importance of properly managing the injury.
  • Allowing enough healing and recovery time following a concussion is crucial in preventing any further damage. Research shows that the effects of repeated concussion in young athletes are cumulative. Most athletes who experience an initial concussion can recover completely as long as they are not returned to contact sports too soon. Following a concussion, there is a period of change in brain function that varies in severity and length with each individual. During this time, the brain is vulnerable to more severe or permanent injury. If the athlete sustains a second concussion during this time period, the risk of more serious brain injury increases.
  • In recent years, research has shown that even seemingly mild concussions can have serious consequences in young athletes if they are not properly managed. Loss of consciousness is not an indicator of injury severity. Traditional imaging techniques such as MRI and CT may be helpful in severe injury cases, but cannot identify subtle effects believed to occur in mild concussion. 
  • An explosion of scientific research over the past decade has taught doctors more about the proper management of sports-related concussion than was ever known before, and has raised public awareness and significantly changed the way sports concussions are managed.
  • Much of the recently published research includes data proving the usefulness of objective neurocognitive testing, such as ImPACT™, as part of the comprehensive clinical evaluation to determine recovery following concussion.  Recent international sports injury management guidelines have emphasized player symptoms and neuropsychological test results as “cornerstones” of the evaluation and management process.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Susan Manko
University of Pittsburgh Schools of the Health Sciences

Concussions are common in young athletes but the underlying changes in brain function that occur have been poorly understood. Now, a University of Pittsburgh School of Medicine study is the first to link changes in brain function directly to the recovery of the athlete. Results of the five-year study, funded by the National Institutes of Health, are published in the August issue of the scientific peer-reviewed journal, Neurosurgery, the official journal of the Congress of Neurological Surgeons.

“We found that abnormal brain activity in children and adolescents on functional MRI (fMRI) was clearly related to their performance on neuropsychological tests of attention and memory and to their report of symptoms such as headaches,” said principal investigator Mark Lovell, Ph.D., asssociate professor in the departments of orthopaedic surgery and neurological surgery at the University of Pittsburgh School of Medicine.

“These results confirm crucial objective information that is commonly obtained by neuropsychological testing to help team doctors and athletic trainers make critical decisions about concussion management and safe return to play,” added Dr. Lovell, who is founding director of the University of Pittsburgh Medical Center (UPMC) Sports Medicine Concussion Program, a clinical service and research program focused on the management of sports-related concussions.

“Our findings have several implications for understanding the recovery process after sports-related concussions,” said study co-author Michael (Micky) Collins, Ph.D., assistant professor in the departments of orthopaedic surgery and neurological surgery at Pitt’s School of Medicine, and assistant director of the UPMC program. “Although the results of this study must be considered preliminary, fMRI represents an important evolving technology that is providing further insight now for safe return-to-play decisions in young athletes and may help shape guidelines in the future.”

The study helps define concussion and recovery for safe return-to-play

According to the Centers for Disease Control and Prevention, between 1.4 and 3.6 million sports and recreation-related concussions occur each year, with the majority happening at the high school level. “An explosion of scientific research over the past decade has taught us more about mild traumatic brain injury or concussion than we have ever known,” noted Dr. Lovell, “including the knowledge that mismanagement of even seemingly mild concussions can lead to serious consequences in young athletes.”

A concussion can occur when an athlete receives a traumatic force to the head or upper body that causes the brain to shake inside of the skull. Injury is defined as a concussion when it causes a change in mental status such as loss of consciousness, amnesia, disorientation, confusion or mental fogginess. The severity, effects and recovery of concussion are difficult to determine because no two concussions are alike, and symptoms are not always straightforward. In recent years, research has shown that until a concussed brain is completely healed, the brain may be vulnerable to further injury, which has led to published studies that have raised public awareness and significantly changed the way sports concussions are managed. Importantly, much of this research has included data that proves the usefulness of objective neuropsychological test data as part of the comprehensive clinical evaluation to determine clinical recovery following concussion. In fact, recent international concussion management guidelines have emphasized player symptoms and neuropsychological test results as “cornerstones” of the injury evaluation and management process.

While neuropsychological testing has become an increasingly useful tool, no published studies have examined the relationship between changes in computerized neuropsychological testing completed in a medical clinic and brain function as measured by fMRI. The lack of studies using fMRI may be due to the fact that studies of this nature are very expensive and equipment necessary to undertake this research is not readily available outside of a handful of academic medical centers. UPMC is one of few such centers with the capability of collecting both neurophysiological (fMRI) and neuropsychological data from injured and clinically managed athletes. fMRI is one of the few brain scanning tools that can show brain activity, not just the anatomy. Traditional brain scanning techniques such as MRI and CT are helpful in viewing changes to the brain anatomy in more severe cases, but cannot identify subtle brain-related changes that are believed to occur on a metabolic rather than an anatomic level. fMRI can determine, through measurement of cerebral blood flow and metabolic changes, which parts of the brain are activated in response to different cognitive activities.

fMRI reveals preliminary evidence and lays ground work for future research

“In our study, using fMRI, we demonstrate that the functioning of a network of brain regions is significantly associated with both the severity of concussion symptoms and time to recover,” said Jamie Pardini, Ph.D., a neuropsychologist on the clinical and research staff of the UPMC concussion program and co-author of the study. The study documented the link between changes in brain activation and clinical recovery in concussed athletes, which was defined as a complete resolution of symptoms and neuropsychological testing results that appeared within expected levels or back to the athlete’s personal baseline. “It is our view that studies establishing a link between brain physiology and neuropsychological testing help demonstrate the utility of neuropsychological testing as a proxy for direct measurement of brain functioning after concussion,” Dr. Pardini added.

The research project involved 28 concussed high school athletes and 13 age-matched controls. The concussed athletes underwent fMRI evaluation within approximately one week of injury and then again when they met criteria for clinical recovery. During their fMRI exams, the athletes were given working memory tasks to complete while the brain’s activity was observed and recorded. As a group, athletes who demonstrated the greatest degree of hyperactivation at the time of their first fMRI scan also demonstrated a more prolonged clinical recovery than did athletes who demonstrated less hyperactivation during their first fMRI scan. “We identified networks of brain regions where changes in functional activation were associated with performance on computerized neuropsychological testing and certain post-concussion symptoms,” reported Dr. Pardini. “Also, our study confirms previous research suggesting that there are neurophysiological abnormalities that can be measured even after a seemingly mild concussion,” she added. The study utilized a computer-based neuropsychological test called ImPACT™ (Immediate Post-Concussion and Cognitive Testing), which measures cognitive function such as attention, memory, speed of response and decision making. ImPACT was developed by Dr. Lovell and colleagues over the past decade and has been extensively researched by the University of Pittsburgh and other academic institutions throughout the world. Drs. Lovell and Collins have a proprietary interest in the ImPACT test as does UPMC. ImPACT Applications, Inc., is a Pittsburgh-based company that owns and licenses the ImPACT tool.

“Recent years have marked exciting and important discoveries in sports concussion research but there are still many unanswered questions,” said Dr. Lovell. “Continued research designed to evaluate multiple parameters of concussion effects and recovery will further help structure return-to-play guidelines.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Susan Manko
University of Pittsburgh Schools of the Health Sciences

Other authors of the study include James Becker, Ph.D., of the University of Pittsburgh; Joel Welling, Ph.D., Jennifer Bakal and William Eddy, Ph.D., of Carnegie-Mellon University; Nicole Lazar, Ph.D., of the University of Georgia, Athens, Ga.; and Rebecca Roush, Psychology Software Tools, Pittsburgh. The study was funded by a $3 million grant from the National Institutes of Health.

A player just took a hard knock to the head and is lying on the field. A coach rushes to his side, but the player sits up and seems fine.He knows who the president is and how many fingers the coach is holding up. But is he ready to get back in the game?

More than 750,000 mild traumatic brain injuries (mTBI) occur in the United States each year. When a player or soldier with even a mild concussion is sent back to the field, another blow to the head can lead to additional life long problems or even second impact syndrome, which has a mortality rate of up to 50 percent. But the injury is difficult to diagnose, even with a quiet room and a several-hour-long test.

Michelle LaPlaca, an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, and David Wright, assistant director of Emory University’s Emergency Medicine Research Center, have developed a new device to detect brain injuries right on the sidelines of a football game, on a battlefield or in the emergency room.

Called DETECT (Display Enhanced Testing for Concussions and mTBI system), the device is a fast, easy to administer and sensitive system for assessing problems associated with concussions. The DETECT device is an integrated system that includes software applications, a portable computer and an LCD display in the headgear.

While a typical mTBI test requires a quiet room and 1-2 hours of testing, DETECT performs neuropsychological tests in an immersive environment in about 7 minutes, regardless of surrounding noise and movement. So, a football player or soldier who just took a hard hit to the head can take the test and either be safely cleared to get back on the field or sent to receive medical attention.

The device blocks external stimuli that could interfere with testing, such as light and sound. This allows the test to be given in virtually any setting, even a bright football field with a roaring crowd.

When suffering from mTBI, a person will have difficulty with certain types of thinking controlled by a different areas of the brain, such as working memory, complex reaction and multi-tasking. DETECT runs the wearer through three types of neuropsychological tests that measure the function of several parts of the brain as it attempts to perform the tests.

For example, the first shows the wearer a series of shapes with different colors and textures and gives voice instructions. The wearer uses a simple controller (similar to a video game controller) to respond to the commands. The device then measures the wearer’s response times and answer selections. If the response time is too slow or the incorrect answers were provided, it indicates impairment.

The DETECT system includes a laptop to run the software, a head-mounted display, earmuffs that also act as headphones and an input device (controller). The display projects the visual aspect of the test, the headphones provide the verbal instructions and the controller records the wearer’s response.

In addition to the advantages of its speed and portability, DETECT can also be administered by a non-medical personnel such as a coach or parent rather than a trained neurophysiologist.

While the device has already been tested in the lab and in a hospital emergency room, the Georgia Tech football program recognizes the need for improved concussion assessment and plans to test this new technology.

DETECT may have other potential cognitive testing applications, such as helping assess cognitive impairment related to Alzheimer’s disease or drug use. The test would be brief and could be performed in a general physician’s office.

DETECT is expected to be commercially available in the next three to five years.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Megan McRainey
Georgia Institute of Technology

Football players who suffer the dangerous head injury known as concussion are three times more likely than other players to suffer a second concussion in the same season, according to a new University of North Carolina at Chapel Hill study.The study, published in the September-October issue of the American Journal of Sports Medicine, suggests that the brain is more susceptible to injury when it has not had enough time to recover from a first injury. Researchers say the finding is important because concussions can lead to permanent brain damage, vision impairment or even death if not managed properly.

“We believe recurrences are more likely because injured players are returning to practice and to games too quickly after blows to the head,” said Dr. Kevin M. Guskiewicz, assistant professor of exercise and sport science at UNC-CH and study leader. “Many clinicians are not following the medical guidelines that players should be symptom-free for several days before returning.”

Guskiewicz directs the Sports Medicine Research Laboratory and the Undergraduate Athletic Training Education Program, both at UNC-CH. Co-authors of the new paper are Nancy L. Weaver, research associate for the N.C. High School Injury Surveillance Program; Darin A. Padua, doctoral student in sports medicine at the University of Virginia; and Dr. William E. Garrett Jr., professor and chair of orthopaedics at the UNC-CH School of Medicine.

For three years, the researchers surveyed a random sample of 242 certified athletic trainers across the United States who worked with high school and college football teams. More than 17,500 football players were represented in the study, which covered 1995 to 1997. About 5 percent suffered concussions each year. Researchers also conducted telephone interviews with a smaller group.

“We wanted to learn more about concussions — the incidence of injury, the mechanism of injury and whether players seemed to be injured more frequently on artificial turf than on grass,” Guskiewicz said. “We found the incidence of injury to be highest at the high school and Division III level, while Division I and II college players suffered fewer concussive injuries.”

Possible explanations include poorer quality and fit of protective equipment, he said. Another possibility is that college players are more skilled on average, and better players are known to be less susceptible to injury.

The UNC-CH professor and colleagues found that 31 percent of athletes with concussions began playing again the same day they were injured.

“This didn’t surprise us, but it does worry us,” Guskiewicz said. “Eighty-six percent of players reported having at least a headache after the incident, and you should never return to play with a headache. It was probably all right for the 14 percent of players with no symptoms to return.”

Artificial turf didn’t produce more head injuries than natural grass, the researchers found. Concussions on artificial turf, however, were more serious. Artificial athletic fields are sheets of synthetic grass over shock-absorbing pads stretched across concrete slabs.

Another key finding was that only one in 20 players suffered a concussion during the season rather than the one in five reported in 1983. Almost 15 percent of injured players suffered a second concussion in the same season, and it tended to be more serious than the first. The most common symptoms were headache, dizziness and confusion.

“That earlier 20 percent figure appears to have been a gross over-estimation,” Guskiewicz said. “Still, the rules have changed to make the game safer and the equipment, especially helmets, are safer and have to be approved by the National Operating Committee on Standards in Athletic Equipment (NOCSAE). Also, many coaches are being smarter in limiting physical contact time in practices. They are stressing the importance of players keeping their heads up during blocking and tackling, not dropping their heads, which is against the newer rules and is much more dangerous.”

Defensive backs, offensive linemen and linebackers were the most frequently concussed players, but special team players and wide receivers were more likely to suffer more serious concussions. During the 1999 season, all six U.S. high school players killed as a direct result of football accidents died from injuries to their brains, according to a different UNC-CH study released in August.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: David Williamson
University of North Carolina at Chapel Hill