Archive for the ‘Soccer’ Category

A study published in Angiology shows that supplementation with the pine bark extract Pycnogenol® (pic-noj-en-all) improves blood flow to the muscles which speeds recovery after physical exercise. The study of 113 participants demonstrated that Pycnogenol significantly reduces muscular pain and cramps in athletes and healthy, normal individuals.

“With the millions of athletes worldwide, this truly is a profound breakthrough and extremely significant for all individuals interested in muscle cramp and pain relief with a natural approach. These findings indicate that Pycnogenol can play an important role in sports by improving blood flow to the muscles and hastening post-exercise recovery, said Dr. Peter Rohdewald, a lead researcher of the study.

Researchers at L’Aquila University in Italy and at the University of Würzburg in Germany studied the effects of Pycnogenol® on venous disorders and cramping in two separate studies.

The first study consisted of 66 participants who had experienced normal cramping at some point, had venous insufficiency, or were athletes who suffer from exercise-induced cramping. The first two weeks of the study was an observation period and participants did not supplement with Pycnogenol®. Symptoms related to venous disorders, and the number of cramping episodes each participant experienced over the two observation weeks was recorded.

Next, all the participants were given 200 mg of Pycnogenol once a day for four weeks. After the treatment phase, participants’ symptoms and cramping episodes were recorded for one week without any Pycnogenol supplementation.

The researchers found a significant decrease in the number of cramps the participants experienced while supplementing with Pycnogenol.® Participants who had experienced normal cramping had a 25 percent reduction in the number of cramps experienced while taking Pycnogenol.

Participants with venous insufficiency experienced a 40 percent reduction in the number of cramps, and athletes with frequent cramping experienced a 13 percent reduction in the number of cramps while on Pycnogenol.®

The second study involved 47 participants with diabetic microangiopathy (a disorder of the smallest veins commonly associated with diabetes), or intermittent claudication (a blood vessel disease that causes the legs to easily cramp).This study also used a two-week pre-trial observation period followed by a week of supplementing with Pycnogenol (200 mg per day for one week), followed by a week of observation without Pycnogenol® supplementation.

Patients with diabetic microangiopathy had a 20.8 percent reduction in pain, while participants with claudication experienced a 21 percent decrease in the amount of pain experienced while supplementing with Pycnogenol.® Results indicated participants who took placebo experienced no decrease in pain.

Cramps are a common problem for people of all ages, ranging to the extreme fit and healthy to people who suffer from health problems. Previously, magnesium was hailed as the natural approach for relieving muscle cramps, however studies continue to show magnesium to be inefficient for reducing muscle cramps.

“Pycnogenol® improves the blood supply to muscle tissue creating a relief effect on muscle cramping and pain. Poor circulation in the muscle is known to cause cramps and Pycnogenol® improved the cramping in patients due to a stimulation of blood flow to their muscle tissue. Nitric oxide (NO) a blood gas, is well known to enhance blood flow and Pycnogenol® may be influencing the activity of NO,” said Rohdewald. “The insufficient production of NO is the common denominator responsible for impaired blood flow in vascular disease.”

Strenuous exercise is known to involve muscle damage which may be followed by symptoms of inflammation. In separate studies published this year and in 2004 and 2005, Pycnogenol® demonstrated its anti-inflammatory effects in clinical trials for asthma, dysmenorrhea and osteoarthritis.

—————————-
Article adapted by MD Only Weblog from original press release.
—————————-  

Contact: Pycnogenol®

About Pycnogenol®
Pycnogenol® is a natural plant extract originating from the bark of the maritime pine that grows along the coast of southwest France and is found to contain a unique combination of procyanidins, bioflavonoids and organic acids, which offer extensive natural health benefits. The extract has been widely studied for the past 35 years and has more than 220 published studies and review articles ensuring safety and efficacy as an ingredient. Today, Pycnogenol® is available in more than 600 dietary supplements, multi-vitamins and health products worldwide.

Advertisements

Don’t drink alcohol. Take vitamins. Avoid eating eggs. We’ve heard these pieces of nutritional advice for years – but are they accurate?

Not necessarily, say two exercise physiologists who presented at the American College of Sports Medicine (ACSM) 11th-annual Health & Fitness Summit & Exposition in Dallas, Texas. Wendy Repovich, Ph.D., FACSM, and Janet Peterson, Dr.P.H., FACSM, set out to debunk the “Top 10 Nutrition Myths.”

According to Repovich and Peterson, these nutrition myths are:

10. Eating carbohydrates makes you fat. Cutting carbs from your diet may have short-term weight loss benefits due to water loss from a decrease in carbohydrate stores, but eating carbs in moderation does not directly lead to weight gain. The body uses carbs for energy, and going too long without them can cause lethargy.

9. Drink eight, 8-oz. glasses of water per day. You should replace water lost through breathing, excrement and sweating each day – but that doesn’t necessarily total 64 ounces of water. It’s hard to measure the exact amount of water you have consumed daily in food and drink, but if your urine is pale yellow, you’re doing a good job. If it’s a darker yellow, drink more H2O.

8. Brown grain products are whole grain products. Brown dyes and additives can give foods the deceiving appearance of whole grain. Read labels to be sure a food is whole grain, and try to get three-ounce equivalents of whole grains per day to reduce the risk of heart disease, diabetes, and stroke.

7. Eating eggs will raise your cholesterol. This myth began because egg yolks have the most concentrated amount of cholesterol of any food. However, there’s not enough cholesterol there to pose health risks if eggs are eaten in moderation. Studies suggest that eating one egg per day will not raise cholesterol levels and that eggs are actually a great source of nutrients.

6. All alcohol is bad for you. Again, moderation is key. Six ounces of wine and 12 ounces of beer are considered moderate amounts, and should not pose any adverse health effects to the average healthy adult. All alcohol is an anticoagulant and red wine also contains antioxidants, so drinking a small amount daily can be beneficial.

5. Vitamin supplements are necessary for everyone. If you eat a variety of fruits, vegetables, and whole grains, along with moderate amounts of a variety of low-fat dairy and protein and the right quantity of calories, you don’t need to supplement. Most Americans do not, so a multi-vitamin might be good. Special vitamin supplements are also recommended for people who are pregnant or have nutritional disorders.

4. Consuming extra protein is necessary to build muscle mass. Contrary to claims of some protein supplement companies, consuming extra protein does nothing to bulk up muscle unless you are also doing significant weight training at the same time. Even then the increased requirement can easily come from food. A potential problem with supplements is the body has to work overtime to get rid of excess protein, and can become distressed as a result.

3. Eating fiber causes problems if you have irritable bowel syndrome (IBS). There are two kinds of fiber: soluble and insoluble. Insoluble fiber can cause problems in IBS sufferers; soluble fiber, however, is more easily absorbed by the body and helps prevent constipation for those with IBS. Soluble fiber is found in most grains.

2. Eating immediately after a workout will improve recovery. Endurance athletes need to take in carbohydrates immediately after a workout to replace glycogen stores, and a small amount of protein with the drink enhances the effect. Drinking low-fat chocolate milk or a carbohydrate drink, like Gatorade, is better for the body, as they replace glycogen stores lost during exercise. Protein is not going to help build muscle, so strength athletes do not need to eat immediately following their workout.

1. Type 2 diabetes can be prevented by eating foods low on the glycemic index. High levels of glucose are not what “cause” diabetes; the disease is caused by the body’s resistance to insulin. Foods high on the glycemic index can cause glucose levels to spike, but this is just an indicator of the presence of diabetes, not the root cause.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Communications and Public Information
American College of Sports Medicine

The American College of Sports Medicine is the largest sports medicine and exercise science organization in the world. More than 20,000 International, National and Regional members are dedicated to promoting and integrating scientific research, education and practical applications of sports medicine and exercise science to maintain and enhance physical performance, fitness, health and quality of life.

Lower muscle mass and an increase in body fat are common consequences of growing older.

While exercise is a proven way to prevent the loss of muscle mass, a new study led by McMaster researcher Dr. Mark Tarnopolsky shows that taking a combination of creatine monohydrate (CrM) and conjugated linoleic acid (CLA) in addition to resistance exercise training provides even greater benefits.

The study to be published on Oct. 3 in PLoS One, an international, peer-reviewed online journal of the Public Library of Science, involved 19 men and 20 women who were 65 years or older and took part in a six-month program of regular resistance exercise training.

In the randomized double blind trial, some of the participants were given a daily supplement of creatine (a naturally produced compound that supplies energy to muscles) and linoleic acid (a naturally occurring fatty acid), while others were given a placebo. All participants took part in the same exercise program.

The exercise training resulted in improvements of functional ability and strength in all participants, but those taking the CrM and CLA showed even greater gains in muscle endurance, an increase in fat-free mass and a decrease in the percentage of body fat.

“This data confirms that supervised resistance exercise training is safe and effective for increasing strength and function in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six month period,” said Tarnopolsky, a professor of pediatrics and medicine.

This study provides functional outcomes that build on an earlier mechanistic study co-led by Tarnopolsky and Dr. S. Melov at the Buck Institute of Age Research, published in PLoS One this year, which provided evidence that six months of resistance exercise reversed some of the muscle gene expression abnormalities associated with the aging process.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Veronica McGuire
McMaster University

Although it’s too soon to recommend dropping by Starbucks before hitting the gym, a new study suggests that caffeine can help reduce the post-workout soreness that discourages some people from exercising.In a study to be published in the February issue of The Journal of Pain, a team of University of Georgia researchers finds that moderate doses of caffeine, roughly equivalent to two cups of coffee, cut post-workout muscle pain by up to 48 percent in a small sample of volunteers.

Lead author Victor Maridakis, a researcher in the department of kinesiology at the UGA College of Education, said the findings may be particularly relevant to people new to exercise, since they tend to experience the most soreness.

“If you can use caffeine to reduce the pain, it may make it easier to transition from that first week into a much longer exercise program,” he said.

Maridakis and his colleagues studied nine female college students who were not regular caffeine users and did not engage in regular resistance training. One and two days after an exercise session that caused moderate muscle soreness, the volunteers took either caffeine or a placebo and performed two different quadriceps (thigh) exercises, one designed to produce a maximal force, the other designed to generate a sub-maximal force. Those that consumed caffeine one-hour before the maximum force test had a 48 percent reduction in pain compared to the placebo group, while those that took caffeine before the sub-maximal test reported a 26 percent reduction in pain.

Caffeine has long been known to increase alertness and endurance, and a 2003 study led by UGA professor Patrick O’Connor found that caffeine reduces thigh pain during moderate-intensity cycling. O’Connor, who along with professors Kevin McCully and the late Gary Dudley co-authored the current study, explained that caffeine likely works by blocking the body’s receptors for adenosine, a chemical released in response to inflammation.

Despite the positive findings in the study, the researchers say there are some caveats. First, the results may not be applicable to regular caffeine users, since they may be less sensitive to caffeine’s effect. The researchers chose to study women to get a definitive answer in at least one sex, but men may respond differently to caffeine. And the small sample size of nine volunteers means that the study will have to be replicated with a larger study.

O’Connor said that despite these limitations, caffeine appears to be more effective in relieving post-workout muscle pain than several commonly used drugs. Previous studies have found that the pain reliever naproxen (the active ingredient in Aleve) produced a 30 percent reduction in soreness. Aspirin produced a 25 percent reduction, and ibuprofen has produced inconsistent results.

“A lot of times what people use for muscle pain is aspirin or ibuprofen, but caffeine seems to work better than those drugs, at least among women whose daily caffeine consumption is low,” O’Connor said.

Still, the researchers recommend that people use caution when using caffeine before a workout. For some people, too much caffeine can produce side effects such as jitteriness, heart palpitations and sleep disturbances.

“It can reduce pain,” Maridakis said, “but you have to apply some common sense and not go overboard.”

—————————-
Article adapted by MD Only Sports Weblog from original press release.
—————————-

Contact: Sam Fahmy
University of Georgia

Drinking water during a long-distance race may do serious harm rather than keep you safe from injury if you’re drinking too much, according to a cardiologist at UT Southwestern Medical Center.Runners or any long-distance athletes who drink too much water during a race could put themselves at jeopardy for developing hyponatremia, a condition marked by a loss in the body’s sodium content that can result in physical symptoms such as lethargy, disorientation, seizures and even respiratory distress.

In a perspectives article in the current issue of The New England Journal of Medicine, Dr. Benjamin Levine, professor of internal medicine at UT Southwestern, said competitive runners are less likely to suffer from hyponatremia.

“Those who are running to finish the race very fast don’t have time to drink a lot of water along the way,” Dr. Levine said. “Those who are not running the race competitively tend to stop at every water station and take a drink. Over the course of a long race, they can dilute themselves.”

In addition popular sports drinks don’t always include enough sodium to offset the body’s loss of the mineral during exercise. The drinks often carry more water with smaller concentrations of salts than are normally found in the human body; therefore, they do not replace salts adequately, said Dr. Levine, medical director of the Institute for Exercise and Environmental Medicine, a collaboration between UT Southwestern and Presbyterian Hospital of Dallas.

The NEJM perspectives article accompanies a study in the same journal by researchers at Children’s Hospital in Boston and Harvard Medical School. The study evaluates the blood concentration of sodium in runners both before and after a long race and examines their risk factors for developing hyponatremia. It recommends individualized fluid-replacement consumption by all competing athletes.

“Researchers of the study found a surprisingly large number of runners had actually gained weight during the race and their sodium concentrations were very low – some were dangerously low,” Dr. Levine said. “The recommendations listed in the study that fluid-replacement schedules be individualized for all athletes competing in long-distance events should be taken seriously by all competitors.”

People lose water and salts from their bodies at different rates during exercise, he said. Heat and humidity also play a role in the rate of this loss. Calculating fluid loss is as simple as weighing yourself before and after exercise and comparing that number to the amount of fluid you consumed throughout.

“All serious distance athletes should find out what their rate of fluid loss is and individualize their fluid intake prior to a distance event,” Dr. Levine said. “It’s also good to accept some mild dehydration during a long race. There are plenty of Web sites available now that show how to customize your fluid intake.”

He also added that taking along salty snacks to eat during the race is a good way of combating hyponatremia. Generally, athletes of all types are instructed prior to activities that water consumption is necessary to prevent illness from heat and to maintain performance levels.

It is also clear, however, that fixed global recommendations for fluid replacement may not be optimal for individual athletes of different body types and with varying degrees of training and heat acclimatization.

—————————-
Article adapted by MD Only Sports Weblog from original press release.
—————————-

Contact: Katherine Morales
UT Southwestern Medical Center

Peak athletic performance may be related to time of day, suggests a University of Chicago study being presented to the Endocrine Society’s annual meeting, ENDO 2001, in Denver, Colorado, on June 22, 2001. The study shows that the response of the systems regulating energy metabolism and some hormones differs according to when in the day exercise is performed.

Subjects who exercised at night had much larger drops in glucose levels in response to exercise than at other times of day. Exercise in the evening and at night elicited large increases in the levels of two hormones important for energy metabolism, cortisol and thyrotropin. Exercise at other times of day had much smaller effects on these hormones. In contrast, marked increases in growth hormone levels in response to exercise were not effected by the time of day.

“The effects of exercise we observed may explain how some times of day could be better than others for regular exercise or athletic performance, as we might expect from anectdotally reported variations in peak athletic performance,” said Orfeu Buxton, Ph.D., a post-doctoral fellow in endocrinology at the University of Chicago. “We found strong evidence for substantial changes in glucose metabolism and an array of hormonal responses to 1-hour, high-intensity exercise, dependent on the timing of the exercise. Circadian rhythms, generated by our 24-hour internal clock, appear to play an important role in the complex response to exercise.”

For the study, conducted in the Clinical Research Center of the University of Chicago, 40 healthy men, between the ages of 20 and 30, were divided into five groups. Four groups exercised vigorously for one hour on a stair-stepper in the morning, afternoon, evening or night. A control group did not exercise. A standard marker, the timing of melatonin secretion, was used to determine the timing of each individual’s daily rhythm, his circadian “clock time.”

When not exercising, the subjects rested in bed with constant glucose infusion to avoid fluctuation in their blood sugar levels caused by intermittent meals. Blood levels of the “circadian hormones,” melatonin, cortisol and thyrotropin, and the levels of growth hormone and glucose were compared to blood levels for the same time of day in the resting control subjects.

The importance of timing for hormonal secretion and energy metabolism is demonstrated by the distinct 24-hour patterns of secretion for each hormonal system. One hormone may be actively secreted in a complex pulsating pattern while another may be in a resting phase.

Many circadian rhythms, such as heart rate, oxygen consumption, and cardio-pulmonary function play a role in athletic performance. Rhythmic patterns of hormonal secretion provide internal temporal organization essential to the coordination of physiological processes. Physical exercise is associated with marked metabolic changes and can elicit a variety of neuroendocrine responses. Although these metabolic and hormonal responses to morning exercise are well-documented, few studies have examined the effects of exercise at other times of day.

“Our study covers new ground, demonstrating variation in the effects of exercise at four different times of day, with circadian time precisely quantified, with a practical duration of exercise, and with a high intensity designed to elicit maximal effects” said Buxton.

—————————-
Article adapted by MD Only Sports Weblog from original press release.
—————————-

Contact: Jeanne Galatzer-Levy
University of Chicago Medical Center

Co-authors on the study include, André J. Scheen, M.D., Division of Diabetes, Nutrition and Metabolic Disorders, University of Liége, Belgium; Mireille L’Hermite-Balériaux, Ph.D., Laboratory of Experimental Medicine, Université Libre de Bruxelles, Belgium and Eve Van Cauter, Ph.D., Department of Medicine, University of Chicago.

This work was supported by grants from the Air Force Office of Scientific Research and from the Department of Defense. The University of Chicago Clinical Research Center is supported by a National Institutes of Health grant.

When it comes to coaching, the pep talk is better than the locker room tirade, University of Florida researchers have found.In a project that applied methods previously used only in classroom settings, a team headed by Professor Robert Singer found that changing people’s attributions, or how they think about themselves, influenced their performance in sports tasks they sought to learn.

“How we think about how we will do and how we’ve just done can very much affect our persistence, our attitudes and our achievements,” said Singer, chair of UF’s department of exercise and sport sciences. “It’s not only a belief in what you can do, it’s also an understanding of thinking more objectively.”

The technique is known as attribution training, which involves using people’s self-perceptions and the extent to which they feel they can control their own behavior to help them succeed at various tasks. Those who believe they can control and change how they feel about themselves are said to have constructive attributions.

In the study, scheduled to be published in March in The Sport Psychologist, Singer and UF colleague Iris Orbach divided 35 college-age beginning tennis players into three groups, each of which was given different instructions regarding personal failure. The first was told they could control their attributions and effort and could change their performance. The second was told their failures were due to a lack of innate ability. The third group was told nothing.

In four trials, the first group scored consistently better in performance, expectation, success perception and emotional control, Singer said. For example, on a test to measure feelings of personal control over behavior, the first group scored twice as high as the control group, while the second group scored below the control group.

In a related study in 1997 that focused on basketball time trials, the first group improved their final time between the first and fourth trials more than twice as much as the control group and more than nine times as much as the second group did.

“When it comes down to it, the primary thing is that you really have to understand what helps you to achieve and what’s under your control,” Singer said. “What has been observed is that those individuals who tend to have more constructive attributions tend to persist longer and tend to achieve more than those who do not have constructive attributions.”

Most studies associated with attribution training techniques have been conducted in the area of education, with the goal of raising the standards for children who are underachievers in the classroom. Singer and Orbach were among the first in the world to apply the techniques to sports.

“Why not try this in a sports setting?” Singer said. “The typical design is to train one group with an attributional orientation that reflects that if you try harder and you try smarter, you’ll have a greater chance of doing well. You’ll learn the skills better and think better things will happen.”

Although it is a common perception that believing in yourself can lead you to success, Singer said his study could have a significant impact on the way people teach and learn athletic activities.

“A lot of times in sports, there’s a negative attitude and a lot of criticism that goes on,” he said. “Probably many athletes and coaches don’t realize the significance of what we’re talking about and the relevance of how people think … I believe that if there’s a better understanding by coaches as to the kind of feedback they give to athletes and how stuff is delivered to them, it could make a difference.”

—————————-
Article adapted by MD Only Sports Weblog from original press release.
—————————-

Contact: Kristin Harmel
University of Florida