Archive for the ‘Runner’ Category

Energy bars, touted for improving athletic performance while providing the right combination of essential nutrients, may not always give endurance athletes the boost they expect.An Ohio State University researcher compared two popular energy bars and found that one of the bars didn’t give the moderate increase in blood sugar known to enhance performance in endurance athletes. Instead, its effect was much like a candy bar – giving a big rush of sugar to the blood, followed by a sharp decline.

“Theoretically, energy bars produce more moderate increases and decreases in blood sugar levels than a typical candy bar,” said Steve Hertzler, an associate professor of medical dietetics at Ohio State. “But these claims aren’t necessarily valid.” His study appears in a recent issue of the Journal of the American Dietetic Association.

Hertzler wanted to know how energy bars affected blood glucose levels. Glucose is a sugar that provides energy to the body’s cells – for example, red-blood cells and most parts of the brain derive most of their energy from glucose.

“Athletes – especially those involved in endurance sports – want to enhance performance, and energy bars claim to help keep blood sugar levels at a moderate level,” Hertzler said.

Volunteers had to fast for at least 12 hours before taking part in each of four experiments. Then, they ate one of four experimental “meals” consisting of either four slices of white bread; a Snickers bar; an Ironman PR Bar; or a PowerBar. Each experimental meal provided the same amount of carbohydrates (50 grams.)

Hertzler then tested the effects these foods had on blood glucose levels at 15-minute intervals for up to two hours after each experimental meal. The volunteers had to wait at least 24 hours between each experimental meal.

Hertzler measured each subject’s blood samples for glucose levels, to determine which food most raised blood sugar levels.

Both energy bars caused blood glucose levels to peak at 30 minutes, while levels peaked at 45 minutes after the bread and candy bar were consumed. Blood glucose levels declined steadily throughout the duration of testing for all foods but the Ironman PR Bar. This bar caused blood glucose rates to remain fairly steady, probably because of the moderate carbohydrate level of the bar, according to Hertzler.

“Though blood glucose rates peaked at 30 minutes with both bars, the high-carbohydrate energy bar – the PowerBar – caused a much sharper decline,” Hertzler said. “In fact, the decline was sharper than with the candy bar.” Much of the energy derived from the bread and the candy bar came from carbohydrate and the same was true for the PowerBar. While the bar is low in protein and fat, more than 70 percent of it is made up of carbohydrate (such as high-fructose corn syrup; oat bran; and brown rice). In contrast, 40 percent of the Ironman PR is comprised of carbohydrate (high fructose corn syrup and fructose.) The rest of the bar was comprised of 30 percent fat and 30 percent protein.

“The composition of this bar may have been responsible for the diminished blood glucose response,” Hertzler said. “Athletes involved in short-duration events who want a quick energy boost should eat a high-carbohydrate energy bar or a candy bar,” he suggests. “However, endurance athletes would do well to consume an energy bar with a moderate carbohydrate level.”

Hertzler conducted this study while at Kent State University in Kent, Ohio. He is continuing similar research at Ohio State.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Steve Hertzler
Ohio State University

Editor’s note: This research was funded by a grant from Kent State University. The researcher received no funding from either energy bar manufacturer.

Female athletes often lose their menstrual cycle when training strenuously, but researchers have long speculated on whether this infertility was due to low body fat, low weight or exercise itself. Now, researchers have shown that the cause of athletic amenorrhea is more likely a negative energy balance caused by increasing exercise without increasing food intake.”A growing proportion of women are susceptible to losing their menstrual cycle when exercising strenuously,” says Dr. Nancy I. Williams, assistant professor of kineseology and physiology at Penn State. “If women go six to 12 months without having a menstrual cycle, they could show bone loss. Bone densities in some long distance runners who have gone for a prolonged time period without having normal menstrual cycles can be very low.”

In studies done with monkeys, which show menstrual cyclicity much like women, researchers showed that low energy availability associated with strenuous exercise training plays an important role in causing exercise-induced amenorrhea. These researchers, working at the University of Pittsburgh, published findings in the Journal of Clinical Endocrinology and Metabolism showing that exercise-induced amenorrhea was reversible in the monkeys by increasing food intake while the monkeys still exercised.

Williams worked with Judy L. Cameron, associate professor of psychiatry and cell biology and physiology at the University of Pittsburgh. Dana L. Helmreich and David B. Parfitt, then graduate students, and Anne Caston-Balderrama, at that time a post-doctoral fellow at the University of Pittsburgh, were also part of the research team. The researchers decided to look at an animal model to understand the causes of exercise-induced amenorrhea because it is difficult to closely control factors, such as eating habits and exercise, when studying humans. They chose cynomolgus monkeys because, like humans, they have a menstrual cycle of 28 days, ovulate in mid-cycle and show monthly periods of menses.

“It is difficult to obtain rigorous control in human studies, short of locking people up,” says Williams.

Previous cross-sectional studies and short-term studies in humans had shown a correlation between changes in energy availability and changes in the menstrual cycle, but those studies were not definitive.

There was also some indication that metabolic states experienced by strenuously exercising women were similar to those in chronically calorie restricted people. However, whether the increased energy utilization which occurs with exercise or some other effect of exercise caused exercise-induced reproductive dysfunction was unknown.

“The idea that exercise or something about exercise is harmful to females was not definitively ruled out,” says Williams. “That exercise itself is harmful would be a dangerous message to put out there. We needed to look at what it was about exercise that caused amenorrhea, what it was that suppresses ovulation. To do that, we needed a carefully controlled study.”

After the researchers monitored normal menstrual cycles in eight monkeys for a few months, they trained the monkeys to run on treadmills, slowly increasing their daily training schedule to about six miles per day. Throughout the training period the amount of food provided remained the standard amount for a normal 4.5 to 7.5 pound monkey, although the researchers note that some monkeys did not finish all of their food all of the time.

The researchers found that during the study “there were no significant changes in body weight or caloric intake over the course of training and the development of amenorrhea.” While body weight did not change, there were indications of an adaptation in energy expenditure. That is, the monkeys’ metabolic hormones also changed, with a 20 percent drop in circulating thyroid hormone, suggesting that the suppression of ovulation is more closely related to negative energy balance than to a decrease in body weight.

To seal the conclusion that a negative energy balance was the key to exercise-induced amenorrhea, the researchers took four of the previous eight monkeys and, while keeping them on the same exercise program, provided them with more food than they were used to. All the monkeys eventually resumed normal menstrual cycles. However, those monkeys who increased their food consumption most rapidly and consumed the most additional food, resumed ovulation within as little as 12 to 16 days while those who increased their caloric intake more slowly, took almost two months to resume ovulation.

Williams is now conducting studies on women who agree to exercise and eat according to a prescribed regimen for four to six months. She is concerned because recreational exercisers have the first signs of ovulatory suppression and may easily be thrust into amenorrhea if energy availability declines. Many women that exercise also restrict their calories, consciously or unconsciously.

“Our goal is to test whether practical guidelines can be developed regarding the optimal balance between calories of food taken in and calories expended through exercise in order to maintain ovulation and regular menstrual cycles,” says Williams. “This would then ensure that estrogen levels were also maintained at healthy levels. This is important because estrogen is a key hormone in the body for many physiological systems, influencing bone strength and cardiovascular health, not just reproduction.”

 —————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: A’ndrea Elyse Messer
Penn State

The old adage “use it or lose it” is truer than ever. People who maintain a vigorously active lifestyle as they age gain less weight than people who exercise at more moderate levels, according to a first-of-its-kind study that tracked a large group of runners who kept the same exercise regimen as they grew older. The study also found that maintaining exercise with age is particularly effective in preventing extreme weight gain, which is associated with high blood pressure, high cholesterol, diabetes, and other diseases.

The study, conducted by Paul Williams of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), followed 6,119 men and 2,221 women who maintained their weekly running mileage (to within three miles per week) over a seven-year period. On average, the men and women who ran over 30 miles per week gained half the weight of those who ran less than 15 miles per week.

“To my knowledge, this is the only study of its type,” says Williams, a staff scientist in Berkeley Lab’s Life Sciences Division. “Other studies have tracked exercise over time, but the majority of people will have changed their exercise habits considerably.”

The research is the latest report from the National Runners’ Health Study, a 20-year research initiative started by Williams that includes more than 120,000 runners. It appears in the May issue of the journal Medicine and Science in Sports and Exercise.

Specifically, between the time subjects entered the study and when they were re-contacted seven years later, 25-to-34-year-old men gained 1.4 pounds annually if they ran less than 15 miles per week. In addition, male runners gained 0.8 pounds annually if they ran between 15 and 30 miles per week, and 0.6 pounds annually if they ran more than 30 miles per week.

This trend is mirrored in women. Women between the ages of 18 and 25 gained about two pounds annually if they ran less than 15 miles per week, 1.4 pounds annually if they ran 15 to 30 miles per week, and slightly more than three-quarters of a pound annually if they ran more than 30 miles per week. Other benefits to running more miles each week included fewer inches gained around the waist in both men and women, and fewer added inches to the hips in women.

“As these runners aged, the benefits of exercise were not in the changes they saw in their bodies, but how they didn’t change like the people around them,” says Williams.

Although growing older and gaining weight is something of a package deal, it isn’t the same in everyone. The lucky few remain lean as they age, most people pack on several pounds, and some people become obese. The latter group is particularly at risk for high blood pressure, high cholesterol, and diabetes. Fortunately, Williams’ results show that maintaining exercise can combat such extreme weight gain.

“Getting people to commit to a vigorously active lifestyle while young and lean will go a long way to reducing the obesity epidemic in this country,” says Williams.

Another paper published in the November 2006 issue of the journal Obesity by Williams and Paul Thompson of Hartford (CT) Hospital found that runners who increased their running mileage gained less weight than those who remained sedentary, and runners that quit running became fatter.

“The time to think about exercise is before you think you need it,” says Williams. “The medical journals are full of reports on how difficult it is to regain the slenderness of youth. The trick is not to get fat.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Dan Krotz
DOE/Lawrence Berkeley National Laboratory

Williams’ research was funded by the National Heart, Lung and Blood Institute. The study in the May issue of the journal Medicine and Science in Sports and Exercise is entitled Maintaining Vigorous Activity Attenuates 7-yr Weight Gain in 8,340 Runners.

Trained runners who severely limit the amount of fat in their diets may be suppressing their immune system and increasing their susceptibility to infections and inflammation, a University at Buffalo study has shown.In findings presented here today (May 22, 1999) at the fourth International Society for Exercise and Immunology Symposium, lead author Jaya T. Venkatraman, Ph.D., reported that running 40 miles per week on a diet composed of approximately 17 percent fat compromised the runners’ immune response.

The medium and high-fat diets, composed of approximately 32 and 41 percent fat respectively, left the immune system intact, and enhanced certain components, the findings showed.

“The data suggest that higher-fat diets may lower the proinflammatory cytokines, free radicals and hormones, and may enhance the levels of anti-inflammatory cytokines,” Venkatraman said.

Venkatraman is an associate professor of nutrition in the Department of Physical Therapy, Exercise and Nutrition Sciences in the UB School of Health Related Professions.

Earlier studies published by a UB research group headed by David Pendergast, Ed.D., professor of physiology and biophysics, reported that competitive runners who increased the proportion of fat in their diets improved their endurance with no negative effect on weight, body composition, blood pressure, pulse rate or total cholesterol. (See editor’s note)

However, since a high level of fat was thought to be immunosuppressive, the researchers sought to determine if increasing dietary fat would compromise various elements of the immune system, while improving performance.

“In general, moderate levels of exercise are known to enhance the immune system,” said Venkatraman. “But high-intensity exercise and endurance exercise produce excess levels of free radicals, which may place stress on the immune system.

“Since we have shown that athletes perform better on a higher-fat diet than on a low-fat diet, it was important to determine if the higher-fat diet would further compromise the immune system,” she said. “We found that it did not, but the very-low-fat diet did.”

The study involved six female and eight male competitive runners who trained at 40 miles a week and were part of a larger performance study. They spent a month on their normal diets, followed by a month each on diets composed of approximately 17 percent, 32 percent and 41 percent fat. Protein remained stable at 15 percent and carbohydrates made up the difference.

The immune status of the runners was obtained by analyzing concentrations of essential components of the immune system — leukocytes, cytokines and plasma cortisol — in blood samples taken before and after an endurance exercise test. The tests were conducted at the end of each four-week diet period.

Results showed that natural killer cells, a type of leukocyte and one of the body’s defense mechanisms marshaled to fight infection, were more than doubled in runners after the high-fat diet, compared to the low-fat regimen. Levels of PGE2, inflammation-causing prostaglandins, increased after the endurance test and were higher when the runners were on the low-fat diet.

This study is part of a larger investigation to determine the effects of dietary fat on performance, biochemical and nutritional status, and plasma lipids and lipoprotein profiles in distance runners being conducted by a study group composed of — in addition to Venkatraman and Pendergast — Peter Horvath, Ph.D., associate professor in the UB Department of Physical Therapy, Exercise and Nutrition Sciences, and John Leddy, M.D., clinical professor of orthopaedics and associate director of the UB Sports Medicine Institute.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Lois Baker
University at Buffalo

Marathon runners 50 and older, and female athletes in particular, are showing greater improvement in running times than younger runners, according to a study by a Yale professor.Peter Jokl, M.D., professor of orthopedics, and his co-authors, Paul Sethi, M.D., and Andrew Cooper, all of Yale School of Medicine, looked at the running time, age, and gender of all of the runners in the New York City Marathon from 1983 through 1999. They also evaluated the performances of the top 50 male and top 50 female finishers by age categories. There were 415,000 runners in all. Master athletes were classified as those 50 and older.

Jokl said women marathon runners 50-59 improved their average race time by 2.08 minutes per year, which was substantially greater than men runners of the same age, whose running time improved on average about eight seconds per year.

The older male runners, in turn, increased their running time at a much greater rate than younger male runners. The younger runners, male and female ages 20 to 30, did not significantly improve their running times during the period studied. The most significant trends in improved running times noted in the top 50 finishers in the male category occurred in age 60-69 and 70-79, and for women, in ages 50-59 and 60-69.

“Our data reflect the potential for improvement of the general health status of our aging population,” Jokl said. “It is not surprising that the number of participating master athletes continues to rise. There is a general trend towards increasing numbers of our aging population who are in good health and physically able to participate in these types of strenuous competitions.”

He said the performance limits of master athletes appear to be greater than predicted by previous physiologic studies.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Jacqueline Weaver
Yale University

Citation: British Journal of Sports Medicine, Vol. 38: pp 408-412, August 2004

Endorphins and other morphine-like substances known as opioids, which are released during exercise, don’t just make you feel good — they may also protect you from heart attacks, according to University of Iowa researchers.

It has long been known that the so-called “runner’s high” is caused by natural opioids that are released during exercise. However, a UI study, which is published in the online edition of the American Journal of Physiology’s Heart and Circulatory Physiology, suggests that these opioids may also be responsible for some of exercise’s cardiovascular benefits.

Working with rats, UI researchers showed that blocking the receptors that bind morphine, endorphins and other opioids eliminates the cardiovascular benefits of exercise. Moreover, the UI team showed that exercise was associated with increased expression of several genes involved in opioid pathways that appear to be critical in protecting the heart.

“This is the first evidence linking the natural opioids produced during exercise to the cardio-protective effects of exercise,” said Eric Dickson, M.D., UI associate professor and head of emergency medicine in the Roy J. and Lucille A. Carver College of Medicine and the study’s lead investigator. “We have known for a long time that exercise is great for the heart. This study helps us better understand why.”

Studies have shown that regular vigorous exercise reduces the risk of having a heart attack and improves survival rates following heart attack, even in people with cardiovascular disease. In addition, exercise also decreases the risk of atherosclerosis, stroke, osteoporosis and even depression. However, despite these proven health benefits, much less is understood about how exercise produces these benefits.

The UI study investigated the idea that the opioids produced by exercise might have a direct role in cardio-protection. The researchers compared rats that exercised with rats that did not. As expected, exercised rats sustained significantly less heart damage from a heart attack than non-exercised rats. The researchers then showed that blocking opioid receptors completely eliminated these cardio-protective effects in exercising rats, suggesting that opioids are responsible for some of the cardiac benefits of exercise.

The UI team also showed that exercise was associated with transient increases in expression of several opioid system genes in heart muscle, and changes in expression of other genes that are involved in inflammation and cell death. The researchers plan to investigate whether these altered gene expression patterns reveal specific cardio-protective pathways.

A better understanding of how exercise protects the heart may eventually allow scientists to harness these protective effects for patients with decreased mobility.

“Hopefully this study will move us closer to developing therapies that mimic the benefits of exercise,” Dickson said. “It also serves as a reminder of how important it is to get out and exercise every day.”

—————————-
Article adapted by MD Only Weblog from original press release.
—————————-

Contact: Jennifer Brown
University of Iowa

In addition to Dickson, the UI research team included Christopher Hogrefe, Paula Ludwig, Laynez Ackermann, Lynn Stoll, Ph.D., and Gerene Denning, Ph.D.

STORY SOURCE: University of Iowa Health Science Relations, 5135, Westlawn, Iowa City, Iowa 52242-1178

ORIGINAL ARTICLE: Abstract is available Click here

A study published in Angiology shows that supplementation with the pine bark extract Pycnogenol® (pic-noj-en-all) improves blood flow to the muscles which speeds recovery after physical exercise. The study of 113 participants demonstrated that Pycnogenol significantly reduces muscular pain and cramps in athletes and healthy, normal individuals.

“With the millions of athletes worldwide, this truly is a profound breakthrough and extremely significant for all individuals interested in muscle cramp and pain relief with a natural approach. These findings indicate that Pycnogenol can play an important role in sports by improving blood flow to the muscles and hastening post-exercise recovery, said Dr. Peter Rohdewald, a lead researcher of the study.

Researchers at L’Aquila University in Italy and at the University of Würzburg in Germany studied the effects of Pycnogenol® on venous disorders and cramping in two separate studies.

The first study consisted of 66 participants who had experienced normal cramping at some point, had venous insufficiency, or were athletes who suffer from exercise-induced cramping. The first two weeks of the study was an observation period and participants did not supplement with Pycnogenol®. Symptoms related to venous disorders, and the number of cramping episodes each participant experienced over the two observation weeks was recorded.

Next, all the participants were given 200 mg of Pycnogenol once a day for four weeks. After the treatment phase, participants’ symptoms and cramping episodes were recorded for one week without any Pycnogenol supplementation.

The researchers found a significant decrease in the number of cramps the participants experienced while supplementing with Pycnogenol.® Participants who had experienced normal cramping had a 25 percent reduction in the number of cramps experienced while taking Pycnogenol.

Participants with venous insufficiency experienced a 40 percent reduction in the number of cramps, and athletes with frequent cramping experienced a 13 percent reduction in the number of cramps while on Pycnogenol.®

The second study involved 47 participants with diabetic microangiopathy (a disorder of the smallest veins commonly associated with diabetes), or intermittent claudication (a blood vessel disease that causes the legs to easily cramp).This study also used a two-week pre-trial observation period followed by a week of supplementing with Pycnogenol (200 mg per day for one week), followed by a week of observation without Pycnogenol® supplementation.

Patients with diabetic microangiopathy had a 20.8 percent reduction in pain, while participants with claudication experienced a 21 percent decrease in the amount of pain experienced while supplementing with Pycnogenol.® Results indicated participants who took placebo experienced no decrease in pain.

Cramps are a common problem for people of all ages, ranging to the extreme fit and healthy to people who suffer from health problems. Previously, magnesium was hailed as the natural approach for relieving muscle cramps, however studies continue to show magnesium to be inefficient for reducing muscle cramps.

“Pycnogenol® improves the blood supply to muscle tissue creating a relief effect on muscle cramping and pain. Poor circulation in the muscle is known to cause cramps and Pycnogenol® improved the cramping in patients due to a stimulation of blood flow to their muscle tissue. Nitric oxide (NO) a blood gas, is well known to enhance blood flow and Pycnogenol® may be influencing the activity of NO,” said Rohdewald. “The insufficient production of NO is the common denominator responsible for impaired blood flow in vascular disease.”

Strenuous exercise is known to involve muscle damage which may be followed by symptoms of inflammation. In separate studies published this year and in 2004 and 2005, Pycnogenol® demonstrated its anti-inflammatory effects in clinical trials for asthma, dysmenorrhea and osteoarthritis.

—————————-
Article adapted by MD Only Weblog from original press release.
—————————-  

Contact: Pycnogenol®

About Pycnogenol®
Pycnogenol® is a natural plant extract originating from the bark of the maritime pine that grows along the coast of southwest France and is found to contain a unique combination of procyanidins, bioflavonoids and organic acids, which offer extensive natural health benefits. The extract has been widely studied for the past 35 years and has more than 220 published studies and review articles ensuring safety and efficacy as an ingredient. Today, Pycnogenol® is available in more than 600 dietary supplements, multi-vitamins and health products worldwide.

A stunning discovery by German scientists may make blood doping and the treatment of severe anemia as easy as washing your hair.  

In the October print issue of The FASEB Journal (http://www.fasebj.org/), researchers show that the estimated 100,000 hair follicles on each person’s head have the potential to become erythropoietin (EPO) factories. EPO, the hormone primarily responsible for the creation of red blood cells, is used illegally to enhance athletic performance and is used legally to treat severe anemia associated with kidney failure and chemotherapy.

“The ultimate hope is that we’ll be able to up the production of natural EPO in our hair follicles whenever we need it, safely and at a low cost,” said Ralf Paus, senior author of the study. “Our study also highlights that ancient hormones are engaged in many more activities than conventional medical wisdom has assigned to them.”

Normally, EPO is created and released by the kidneys. When the kidneys fail, or when someone undergoes chemotherapy, this process is disrupted and severe anemia occurs. Today, most people are treated using synthetic EPO to bring red blood cells back to normal levels, but synthetic versions of this hormone are relatively expensive. Blood-doping athletes use synthetic EPO to help their bodies bring red blood cells to above-normal levels. This increased concentration of red blood cells allows the blood to deliver more oxygen to muscles than normal, significantly improving endurance and performance. The major danger in boosting the number of red blood cells above normal is that as the blood thickens with red blood cells, the possibility of heart attack increases.

“This study opens doors to an entirely new approach for treating EPO-related anemia,” said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal. “The study also is important because it suggests that there is still much to learn about ‘well known’ processes in the body.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Source: Cody Mooneyhan
Federation of American Societies for Experimental Biology

The FASEB Journal (http://www.fasebj.org/) is published by the Federation of American Societies for Experimental Biology (FASEB) and is consistently ranked among the top three biology journals worldwide by the Institute for Scientific Information. FASEB comprises 21 nonprofit societies with more than 80,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB advances biological science through collaborative advocacy for research policies that promote scientific progress and education and lead to improvements in human health.

Although bottled water is perceived as a healthier, safer choice over tap water in consumer surveys, that is not necessarily always true, says sports nutritionist Cynthia Sass, R.D., C.S.S.D

In a presentation at the American College of Sports Medicine (ACSM) 11th-annual Health & Fitness Summit & Exposition in Dallas, Texas, Sass outlined the basics of water consumption, comparing bottled and tap varieties.

“Twenty-five percent of all bottled water is actually repackaged tap water,” said Sass.  ““The more a consumer knows about the realities of bottled and tap water, the savvier they can be about selecting water based on costs, preferences and accessibility.”

Is Bottled Best?
In a recent Gallop survey, most consumers indicated they drink bottled water based on their perception it is safer and purer than tap water.  Taste was the second leading reason, while bottled water’s convenience was also a factor.

Bottled water is considered a food, and thus regulated by Food and Drug Administration (FDA).  Tap water is regulated by the U.S. Environmental Protection Agency (EPA).  Both varieties are subject to testing for contaminants, although Sass points out there is no perfect system – both bottled and tap may contain contaminates such as bacteria, arsenic, lead or pesticides.  Independent tests by groups such as the National Resources Defense Council have found:

• Sixty to 70 percent of all bottled water in the United States is packaged and sold within the same state, which exempts it from FDA regulation.  One in five states do not regulate that bottled water.
• While most cities meet the standards for tap water, some tap water in the 19 U.S. cities tested was found to contain arsenic, lead, and pesticides.
• In 1,000 bottles of 103 different brands of bottled water, 22 percent contained synthetic chemicals, bacteria and arsenic.

Most healthy adults can tolerate trace amounts of these contaminates if exposed, but Sass notes some people are more vulnerable and should be more aware of their water source.  These people include cancer patients undergoing chemotherapy, patients who are HIV+ positive or recovering from a transplant or major surgery, and pregnant women, children, and elderly adults. 

For them especially, Sass recommends bottled water treated with reverse osmosis, municipal tap water with a filtering system certified by the National Sanitation Foundation (NSF) or distilled water.  (Most packaging on certified filter devices bear the NSF seal.)

“Bottled” Facts
According to Sass, other selection criteria for consumers may include:

Cost:  Bottled water can cost approximately $1 for a gallon jug, while tap water costs pennies on the dollar.  Distilled water or water treated with reverse osmosis (water captured into vapor so that all solids are left behind and then recaptured into fluid) are purer and considered safe, but are also more expensive.

Packaging:  Sass says a filtering system for tap water may be a better consideration for the environment.  She also pointed out that over time, plastic containers can leak chemicals into the water.  Consumers should look for an expiration date, and store water in cool, dark place.  For this reason, water bottles are not meant to be re-used.

Marketing:  Fitness and specialty waters do not contribute to an athletic advantage or edge.  In fact, vitamin-fortified waters, which provide high daily-value percentages per cup, may pose a risk for oversupplementation.  “Think of your one-a-day vitamin,” says Sass.  “Some of these waters are multi-vitamins in a bottle, so read the label and compare with the rest of your daily intake, including food.”

“Bottled water doesn’t deserve the nutritional halo that most people give it for being pure,” she says.  “If you’re not an exclusive bottled water drinker, you may find it worthwhile to check into filtering your tap water to save money.”

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Communications and Public Information
American College of Sports Medicine

Don’t drink alcohol. Take vitamins. Avoid eating eggs. We’ve heard these pieces of nutritional advice for years – but are they accurate?

Not necessarily, say two exercise physiologists who presented at the American College of Sports Medicine (ACSM) 11th-annual Health & Fitness Summit & Exposition in Dallas, Texas. Wendy Repovich, Ph.D., FACSM, and Janet Peterson, Dr.P.H., FACSM, set out to debunk the “Top 10 Nutrition Myths.”

According to Repovich and Peterson, these nutrition myths are:

10. Eating carbohydrates makes you fat. Cutting carbs from your diet may have short-term weight loss benefits due to water loss from a decrease in carbohydrate stores, but eating carbs in moderation does not directly lead to weight gain. The body uses carbs for energy, and going too long without them can cause lethargy.

9. Drink eight, 8-oz. glasses of water per day. You should replace water lost through breathing, excrement and sweating each day – but that doesn’t necessarily total 64 ounces of water. It’s hard to measure the exact amount of water you have consumed daily in food and drink, but if your urine is pale yellow, you’re doing a good job. If it’s a darker yellow, drink more H2O.

8. Brown grain products are whole grain products. Brown dyes and additives can give foods the deceiving appearance of whole grain. Read labels to be sure a food is whole grain, and try to get three-ounce equivalents of whole grains per day to reduce the risk of heart disease, diabetes, and stroke.

7. Eating eggs will raise your cholesterol. This myth began because egg yolks have the most concentrated amount of cholesterol of any food. However, there’s not enough cholesterol there to pose health risks if eggs are eaten in moderation. Studies suggest that eating one egg per day will not raise cholesterol levels and that eggs are actually a great source of nutrients.

6. All alcohol is bad for you. Again, moderation is key. Six ounces of wine and 12 ounces of beer are considered moderate amounts, and should not pose any adverse health effects to the average healthy adult. All alcohol is an anticoagulant and red wine also contains antioxidants, so drinking a small amount daily can be beneficial.

5. Vitamin supplements are necessary for everyone. If you eat a variety of fruits, vegetables, and whole grains, along with moderate amounts of a variety of low-fat dairy and protein and the right quantity of calories, you don’t need to supplement. Most Americans do not, so a multi-vitamin might be good. Special vitamin supplements are also recommended for people who are pregnant or have nutritional disorders.

4. Consuming extra protein is necessary to build muscle mass. Contrary to claims of some protein supplement companies, consuming extra protein does nothing to bulk up muscle unless you are also doing significant weight training at the same time. Even then the increased requirement can easily come from food. A potential problem with supplements is the body has to work overtime to get rid of excess protein, and can become distressed as a result.

3. Eating fiber causes problems if you have irritable bowel syndrome (IBS). There are two kinds of fiber: soluble and insoluble. Insoluble fiber can cause problems in IBS sufferers; soluble fiber, however, is more easily absorbed by the body and helps prevent constipation for those with IBS. Soluble fiber is found in most grains.

2. Eating immediately after a workout will improve recovery. Endurance athletes need to take in carbohydrates immediately after a workout to replace glycogen stores, and a small amount of protein with the drink enhances the effect. Drinking low-fat chocolate milk or a carbohydrate drink, like Gatorade, is better for the body, as they replace glycogen stores lost during exercise. Protein is not going to help build muscle, so strength athletes do not need to eat immediately following their workout.

1. Type 2 diabetes can be prevented by eating foods low on the glycemic index. High levels of glucose are not what “cause” diabetes; the disease is caused by the body’s resistance to insulin. Foods high on the glycemic index can cause glucose levels to spike, but this is just an indicator of the presence of diabetes, not the root cause.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Communications and Public Information
American College of Sports Medicine

The American College of Sports Medicine is the largest sports medicine and exercise science organization in the world. More than 20,000 International, National and Regional members are dedicated to promoting and integrating scientific research, education and practical applications of sports medicine and exercise science to maintain and enhance physical performance, fitness, health and quality of life.