Archive for the ‘Protein’ Category

Lower muscle mass and an increase in body fat are common consequences of growing older.

While exercise is a proven way to prevent the loss of muscle mass, a new study led by McMaster researcher Dr. Mark Tarnopolsky shows that taking a combination of creatine monohydrate (CrM) and conjugated linoleic acid (CLA) in addition to resistance exercise training provides even greater benefits.

The study to be published on Oct. 3 in PLoS One, an international, peer-reviewed online journal of the Public Library of Science, involved 19 men and 20 women who were 65 years or older and took part in a six-month program of regular resistance exercise training.

In the randomized double blind trial, some of the participants were given a daily supplement of creatine (a naturally produced compound that supplies energy to muscles) and linoleic acid (a naturally occurring fatty acid), while others were given a placebo. All participants took part in the same exercise program.

The exercise training resulted in improvements of functional ability and strength in all participants, but those taking the CrM and CLA showed even greater gains in muscle endurance, an increase in fat-free mass and a decrease in the percentage of body fat.

“This data confirms that supervised resistance exercise training is safe and effective for increasing strength and function in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six month period,” said Tarnopolsky, a professor of pediatrics and medicine.

This study provides functional outcomes that build on an earlier mechanistic study co-led by Tarnopolsky and Dr. S. Melov at the Buck Institute of Age Research, published in PLoS One this year, which provided evidence that six months of resistance exercise reversed some of the muscle gene expression abnormalities associated with the aging process.
—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Veronica McGuire
McMaster University

Advertisements

And it increases endurance to run a mile and decreases inflammation

The Salk Institute scientist who earlier discovered that enhancing the function of a single protein produced a mouse with an innate resistance to weight gain and the ability to run a mile without stopping has found new evidence that this protein and a related protein play central roles in the body’s complex journey to obesity and offer a new and specific metabolic approach to the treatment of obesity related disease such as Syndrome X (insulin resistance, hyperlipidemia and atherosclerosis).

Dr. Ronald M. Evans, a Howard Hughes Medical Investigator at The Salk Institute’s Gene Expression Laboratory, presented two new studies (date) at Experimental Biology 2005 in the scientific sessions of the American Society for Biochemistry and Molecular Biology. The studies focus on genes for two of the nuclear hormone receptors that control broad aspects of body physiology, including serving as molecular sensors for numerous fat soluble hormones, Vitamins A and D, and dietary lipids.

The first study focuses on the gene for PPARd, a master regulator that controls the ability of cells to burn fat. When the “delta switch” is turned on in adipose tissue, local metabolism is activated resulting in increased calorie burning. Increasing PPARd activity in muscle produces the “marathon mouse,” characterized by super-ability for long distance running. Marathon mice contain altered muscle composition, which doubles its physical endurance, enabling it to run an hour longer than a normal mouse. Marathon mice contain increased levels of slow twitch (type I) muscle fiber, which confers innate resistance to weight gain, even in the absence of exercise.

Additional work to be reported at Experimental Biology looks at another characteristic of PPARd: its role as a major regulator of inflammation. Coronary artery lesions or atherosclerosis are thought to be sites of inflammation. Dr. Evans found that activation of PPARd suppresses the inflammatory response in the artery, dramatically slowing down lesion progression. Combining the results of this new study with the original “marathon mouse” findings suggests that PPARd drugs could be effective in controlling atherosclerosis by limiting inflammation and at the same time promoting improved physical performance.

Dr. Evans says he is very excited about the therapeutic possibilities related to activation of the PPARd gene. He believes athletes, especially marathon runners, naturally change their muscle fibers in the same way as seen in the genetically engineered mice, increasing levels of fat-burning muscle fibers and thus building a type of metabolic ‘shield” that keeps them from gaining weight even when they are not exercising.

But athletes do it through long periods of intensive training, an approach unavailable to patients whose weight or medical problems prevent them from exercise. Dr. Evans believes activating the PPARd pathway with drugs (one such experimental drug already is in development to treat people with lipid metabolism) or genetic engineering would help enhance muscle strength, combat obesity, and protect against diabetes in these patients.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Sarah Goodwin
Federation of American Societies for Experimental Biology

Female athletes often lose their menstrual cycle when training strenuously, but researchers have long speculated on whether this infertility was due to low body fat, low weight or exercise itself. Now, researchers have shown that the cause of athletic amenorrhea is more likely a negative energy balance caused by increasing exercise without increasing food intake.”A growing proportion of women are susceptible to losing their menstrual cycle when exercising strenuously,” says Dr. Nancy I. Williams, assistant professor of kineseology and physiology at Penn State. “If women go six to 12 months without having a menstrual cycle, they could show bone loss. Bone densities in some long distance runners who have gone for a prolonged time period without having normal menstrual cycles can be very low.”

In studies done with monkeys, which show menstrual cyclicity much like women, researchers showed that low energy availability associated with strenuous exercise training plays an important role in causing exercise-induced amenorrhea. These researchers, working at the University of Pittsburgh, published findings in the Journal of Clinical Endocrinology and Metabolism showing that exercise-induced amenorrhea was reversible in the monkeys by increasing food intake while the monkeys still exercised.

Williams worked with Judy L. Cameron, associate professor of psychiatry and cell biology and physiology at the University of Pittsburgh. Dana L. Helmreich and David B. Parfitt, then graduate students, and Anne Caston-Balderrama, at that time a post-doctoral fellow at the University of Pittsburgh, were also part of the research team. The researchers decided to look at an animal model to understand the causes of exercise-induced amenorrhea because it is difficult to closely control factors, such as eating habits and exercise, when studying humans. They chose cynomolgus monkeys because, like humans, they have a menstrual cycle of 28 days, ovulate in mid-cycle and show monthly periods of menses.

“It is difficult to obtain rigorous control in human studies, short of locking people up,” says Williams.

Previous cross-sectional studies and short-term studies in humans had shown a correlation between changes in energy availability and changes in the menstrual cycle, but those studies were not definitive.

There was also some indication that metabolic states experienced by strenuously exercising women were similar to those in chronically calorie restricted people. However, whether the increased energy utilization which occurs with exercise or some other effect of exercise caused exercise-induced reproductive dysfunction was unknown.

“The idea that exercise or something about exercise is harmful to females was not definitively ruled out,” says Williams. “That exercise itself is harmful would be a dangerous message to put out there. We needed to look at what it was about exercise that caused amenorrhea, what it was that suppresses ovulation. To do that, we needed a carefully controlled study.”

After the researchers monitored normal menstrual cycles in eight monkeys for a few months, they trained the monkeys to run on treadmills, slowly increasing their daily training schedule to about six miles per day. Throughout the training period the amount of food provided remained the standard amount for a normal 4.5 to 7.5 pound monkey, although the researchers note that some monkeys did not finish all of their food all of the time.

The researchers found that during the study “there were no significant changes in body weight or caloric intake over the course of training and the development of amenorrhea.” While body weight did not change, there were indications of an adaptation in energy expenditure. That is, the monkeys’ metabolic hormones also changed, with a 20 percent drop in circulating thyroid hormone, suggesting that the suppression of ovulation is more closely related to negative energy balance than to a decrease in body weight.

To seal the conclusion that a negative energy balance was the key to exercise-induced amenorrhea, the researchers took four of the previous eight monkeys and, while keeping them on the same exercise program, provided them with more food than they were used to. All the monkeys eventually resumed normal menstrual cycles. However, those monkeys who increased their food consumption most rapidly and consumed the most additional food, resumed ovulation within as little as 12 to 16 days while those who increased their caloric intake more slowly, took almost two months to resume ovulation.

Williams is now conducting studies on women who agree to exercise and eat according to a prescribed regimen for four to six months. She is concerned because recreational exercisers have the first signs of ovulatory suppression and may easily be thrust into amenorrhea if energy availability declines. Many women that exercise also restrict their calories, consciously or unconsciously.

“Our goal is to test whether practical guidelines can be developed regarding the optimal balance between calories of food taken in and calories expended through exercise in order to maintain ovulation and regular menstrual cycles,” says Williams. “This would then ensure that estrogen levels were also maintained at healthy levels. This is important because estrogen is a key hormone in the body for many physiological systems, influencing bone strength and cardiovascular health, not just reproduction.”

 —————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: A’ndrea Elyse Messer
Penn State

If you decide to make the choice to begin bodybuilding, it is good to keep in mind not to become too overzealous and burn itself out too quickly, or even worse, injure yourself. Someone beginning bodybuilding should take it as a gradual process that will eventually lead to more experienced exercise routines.

Below are some suggestions and tip’s for bodybuilding beginners if that is what you choose to pursue.

Diet And Bodybuilding

One of the most important aspects for beginning bodybuilders is diet. If you keep eating fast food or other kinds of junk food you cannot have any expectations to be successful at this sport. When it comes to sculpting your body discipline is one of the main necessities. That is why it is recommended by trainers that you start to consume primarily meat, nuts, fish, grain and milk. Foods such as these are low in fat, as well as high in protein that will assist in helping build muscle as well as increase your metabolism.

Your Workout Routine

Concerning your workout regimen, starting off slowly is important for beginners in this sport. Beginners in this activity in the beginning come to the realization that even though they really want to look as if they have the same physique as bodybuilders on the cover of magazines, or on TV, it is a work in progress. Bodybuilding beginners should start with two sets of repetitions with roughly a minute of rest in between.

They should do this for roughly 45 minutes, 4 days a week. After four weeks have passed, after allowing a body and a time to build itself up, at that point the bodybuilder can start to move gradually up to 60 minutes of a workout while doing three sets of repetitions with roughly a minute of rest in between. At approximately this point, their body should slowly start to change, muscle should be gained and fat should be lost.

Along with exercise and diet, rest is equally important with bodybuilding beginners. This is vitally important, as the individuals muscles need to grow during this period. At a minimum six to eight hours of sleep is recommended per night.

Whatever Your Desires and Goals Are

Whether you want to get into bodybuilding for competitive reasons or for your own personal achievement, it is essential for beginners in this sport to be on a gradual process. Making sure that proper rest, diet and exercise are accomplished is important to physical success. At first do not concern yourself about looking like a bodybuilder immediately; focus on a workout plan that will work for your specific body type as well as your specific goals.

Article Republished From: Liberated Press Releases a web site that DOESN’T use Google Adsense text links in or around articles.

Author Resource:- Listen to Corbin Newlyn as he shares his insights as an expert author and an avid writer in the field of bodybuilding. If you would like to learn more go to Bodybuilding Advice and at Female Bodybuilding tips.

————————————————————————————–

For orignal formulations and designer bodybuilding and sports dietary supplements visit Sports Peformance