Archive for the ‘High School’ Category

A player just took a hard knock to the head and is lying on the field. A coach rushes to his side, but the player sits up and seems fine.He knows who the president is and how many fingers the coach is holding up. But is he ready to get back in the game?

More than 750,000 mild traumatic brain injuries (mTBI) occur in the United States each year. When a player or soldier with even a mild concussion is sent back to the field, another blow to the head can lead to additional life long problems or even second impact syndrome, which has a mortality rate of up to 50 percent. But the injury is difficult to diagnose, even with a quiet room and a several-hour-long test.

Michelle LaPlaca, an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, and David Wright, assistant director of Emory University’s Emergency Medicine Research Center, have developed a new device to detect brain injuries right on the sidelines of a football game, on a battlefield or in the emergency room.

Called DETECT (Display Enhanced Testing for Concussions and mTBI system), the device is a fast, easy to administer and sensitive system for assessing problems associated with concussions. The DETECT device is an integrated system that includes software applications, a portable computer and an LCD display in the headgear.

While a typical mTBI test requires a quiet room and 1-2 hours of testing, DETECT performs neuropsychological tests in an immersive environment in about 7 minutes, regardless of surrounding noise and movement. So, a football player or soldier who just took a hard hit to the head can take the test and either be safely cleared to get back on the field or sent to receive medical attention.

The device blocks external stimuli that could interfere with testing, such as light and sound. This allows the test to be given in virtually any setting, even a bright football field with a roaring crowd.

When suffering from mTBI, a person will have difficulty with certain types of thinking controlled by a different areas of the brain, such as working memory, complex reaction and multi-tasking. DETECT runs the wearer through three types of neuropsychological tests that measure the function of several parts of the brain as it attempts to perform the tests.

For example, the first shows the wearer a series of shapes with different colors and textures and gives voice instructions. The wearer uses a simple controller (similar to a video game controller) to respond to the commands. The device then measures the wearer’s response times and answer selections. If the response time is too slow or the incorrect answers were provided, it indicates impairment.

The DETECT system includes a laptop to run the software, a head-mounted display, earmuffs that also act as headphones and an input device (controller). The display projects the visual aspect of the test, the headphones provide the verbal instructions and the controller records the wearer’s response.

In addition to the advantages of its speed and portability, DETECT can also be administered by a non-medical personnel such as a coach or parent rather than a trained neurophysiologist.

While the device has already been tested in the lab and in a hospital emergency room, the Georgia Tech football program recognizes the need for improved concussion assessment and plans to test this new technology.

DETECT may have other potential cognitive testing applications, such as helping assess cognitive impairment related to Alzheimer’s disease or drug use. The test would be brief and could be performed in a general physician’s office.

DETECT is expected to be commercially available in the next three to five years.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Megan McRainey
Georgia Institute of Technology

Football players who suffer the dangerous head injury known as concussion are three times more likely than other players to suffer a second concussion in the same season, according to a new University of North Carolina at Chapel Hill study.The study, published in the September-October issue of the American Journal of Sports Medicine, suggests that the brain is more susceptible to injury when it has not had enough time to recover from a first injury. Researchers say the finding is important because concussions can lead to permanent brain damage, vision impairment or even death if not managed properly.

“We believe recurrences are more likely because injured players are returning to practice and to games too quickly after blows to the head,” said Dr. Kevin M. Guskiewicz, assistant professor of exercise and sport science at UNC-CH and study leader. “Many clinicians are not following the medical guidelines that players should be symptom-free for several days before returning.”

Guskiewicz directs the Sports Medicine Research Laboratory and the Undergraduate Athletic Training Education Program, both at UNC-CH. Co-authors of the new paper are Nancy L. Weaver, research associate for the N.C. High School Injury Surveillance Program; Darin A. Padua, doctoral student in sports medicine at the University of Virginia; and Dr. William E. Garrett Jr., professor and chair of orthopaedics at the UNC-CH School of Medicine.

For three years, the researchers surveyed a random sample of 242 certified athletic trainers across the United States who worked with high school and college football teams. More than 17,500 football players were represented in the study, which covered 1995 to 1997. About 5 percent suffered concussions each year. Researchers also conducted telephone interviews with a smaller group.

“We wanted to learn more about concussions — the incidence of injury, the mechanism of injury and whether players seemed to be injured more frequently on artificial turf than on grass,” Guskiewicz said. “We found the incidence of injury to be highest at the high school and Division III level, while Division I and II college players suffered fewer concussive injuries.”

Possible explanations include poorer quality and fit of protective equipment, he said. Another possibility is that college players are more skilled on average, and better players are known to be less susceptible to injury.

The UNC-CH professor and colleagues found that 31 percent of athletes with concussions began playing again the same day they were injured.

“This didn’t surprise us, but it does worry us,” Guskiewicz said. “Eighty-six percent of players reported having at least a headache after the incident, and you should never return to play with a headache. It was probably all right for the 14 percent of players with no symptoms to return.”

Artificial turf didn’t produce more head injuries than natural grass, the researchers found. Concussions on artificial turf, however, were more serious. Artificial athletic fields are sheets of synthetic grass over shock-absorbing pads stretched across concrete slabs.

Another key finding was that only one in 20 players suffered a concussion during the season rather than the one in five reported in 1983. Almost 15 percent of injured players suffered a second concussion in the same season, and it tended to be more serious than the first. The most common symptoms were headache, dizziness and confusion.

“That earlier 20 percent figure appears to have been a gross over-estimation,” Guskiewicz said. “Still, the rules have changed to make the game safer and the equipment, especially helmets, are safer and have to be approved by the National Operating Committee on Standards in Athletic Equipment (NOCSAE). Also, many coaches are being smarter in limiting physical contact time in practices. They are stressing the importance of players keeping their heads up during blocking and tackling, not dropping their heads, which is against the newer rules and is much more dangerous.”

Defensive backs, offensive linemen and linebackers were the most frequently concussed players, but special team players and wide receivers were more likely to suffer more serious concussions. During the 1999 season, all six U.S. high school players killed as a direct result of football accidents died from injuries to their brains, according to a different UNC-CH study released in August.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: David Williamson
University of North Carolina at Chapel Hill