Archive for the ‘Energy’ Category

Recipe to recover more quickly from exercise: Finish workout, eat pasta, and wash down with five or six cups of strong coffee.

Glycogen, the muscle’s primary fuel source during exercise, is replenished more rapidly when athletes ingest both carbohydrate and caffeine following exhaustive exercise, new research from the online edition of the Journal of Applied Physiology shows. Athletes who ingested caffeine with carbohydrate had 66% more glycogen in their muscles four hours after finishing intense, glycogen-depleting exercise, compared to when they consumed carbohydrate alone, according to the study, published by The American Physiological Society.

The study, “High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is co-ingested with caffeine,” is by David J. Pedersen, Sarah J. Lessard, Vernon G. Coffey, Emmanuel G. Churchley, Andrew M. Wootton, They Ng, Matthew J. Watt and John A. Hawley. Dr. Pedersen is with the Garvan Institute of Medical Research in Sydney, Australia, Dr. Watt is from St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia. All others are with the Royal Melbourne Institute of Technology University (RMIT) in Bundoora, Victoria, Australia.

A fuller audio interview with Dr. Hawley is available in Episode 11 of the APS podcast, Life Lines, at www.lifelines.tv. The show also includes an interview with Dr. Stanley Schultz, whose physiological discovery of how sugar is transported in the gut led to the development of oral rehydration therapy and sports drinks such as Gatorade and Hi-5.

Caffeine aids carbohydrate uptake  

It is already established that consuming carbohydrate and caffeine prior to and during exercise improves a variety of athletic performances. This is the first study to show that caffeine combined with carbohydrates following exercise can help refuel the muscle faster.

“If you have 66% more fuel for the next day’s training or competition, there is absolutely no question you will go farther or faster,” said Dr. Hawley, the study’s senior author. Caffeine is present in common foods and beverages, including coffee, tea, chocolate and cola drinks.

The study was conducted on seven well-trained endurance cyclists who participated in four sessions. The participants first rode a cycle ergometer until exhaustion, and then consumed a low-carbohydrate dinner before going home. This exercise bout was designed to reduce the athletes’ muscle glycogen stores prior to the experimental trial the next day.

The athletes did not eat again until they returned to the lab the next day for the second session when they again cycled until exhaustion. They then ingested a drink that contained carbohydrate alone or carbohydrate plus caffeine and rested in the laboratory for four hours. During this post-exercise rest time, the researchers took several muscle biopsies and multiple blood samples to measure the amount of glycogen being replenished in the muscle, along with the concentrations of glucose-regulating metabolites and hormones in the blood, including glucose and insulin.

The entire two-session process was repeated 7-10 days later. The only difference was that this time, the athletes drank the beverage that they had not consumed in the previous trial. (That is, if they drank the carbohydrate alone in the first trial, they drank the carbohydrate plus caffeine in the second trial, and vice versa.)

The drinks looked, smelled and tasted the same and both contained the same amount of carbohydrate. Neither the researchers nor the cyclists knew which regimen they were receiving, making it a double-blind, placebo-controlled experiment.

Glucose and insulin levels higher with caffeine ingestion
The researchers found the following:  
  • one hour after exercise, muscle glycogen levels had replenished to the same extent whether or not the athlete had the drink containing carbohydrate and caffeine or carbohydrate only
  • four hours after exercise, the drink containing caffeine resulted in 66% higher glycogen levels compared to the carbohydrate-only drink
  • throughout the four-hour recovery period, the caffeinated drink resulted in higher levels of blood glucose and plasma insulin
  • several signaling proteins believed to play a role in glucose transport into the muscle were elevated to a greater extent after the athletes ingested the carbohydrate-plus-caffeine drink, compared to the carbohydrate-only drink

 Dr. Hawley said it is not yet clear how caffeine aids in facilitating glucose uptake from the blood into the muscles. However, the higher circulating blood glucose and plasma insulin levels were likely to be a factor. In addition, caffeine may increase the activity of several signaling enzymes, including the calcium-dependent protein kinase and protein kinase B (also called Akt), which have roles in muscle glucose uptake during and after exercise.

Lower dose is next step  

In this study, the researchers used a high dose of caffeine to establish that it could help the muscles convert ingested carbohydrates to glycogen more rapidly. However, because caffeine can have potentially negative effects, such as disturbing sleep or causing jitteriness, the next step is to determine whether smaller doses could accomplish the same goal.

Hawley pointed out that the responses to caffeine ingestion vary widely between individuals. Indeed, while several of the athletes in the study said they had a difficult time sleeping the night after the trial in which they ingested caffeine (8 mg per kilogram of body weight, the equivalent of drinking 5-6 cups of strong coffee), several others fell asleep during the recovery period and reported no adverse effects.

Athletes who want to incorporate caffeine into their workouts should experiment during training sessions well in advance of an important competition to find out what works for them.

 —————————-
Article adapted by MD Sports from original press release.
—————————-

Contact: Christine Guilfoy
American Physiological Society

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS) has been an integral part of this scientific discovery process since it was established in 1887.

Neuroscience researchers at the Duke-NUS Graduate Medical School in Singapore have shown for the first time what happens to the visual perceptions of healthy but sleep-deprived volunteers who fight to stay awake, like people who try to drive through the night.

The scientists found that even after sleep deprivation, people had periods of near-normal brain function in which they could finish tasks quickly. However, this normalcy mixed with periods of slow response and severe drops in visual processing and attention, according to their paper, published in the Journal of Neuroscience on May 21.

“Interestingly, the team found that a sleep-deprived brain can normally process simple visuals, like flashing checkerboards. But the ‘higher visual areas’ – those that are responsible for making sense of what we see – didn’t function well,” said Dr. Michael Chee, lead author and professor at the Neurobehavioral Disorders Program at Duke-NUS. “Herein lies the peril of sleep deprivation.”

The research team, including colleagues at the University of Michigan and University of Pennsylvania, used magnetic resonance imaging to measure blood flow in the brain during speedy normal responses and slow “lapse” responses. The study was funded by grants from the DSO National Laboratories in Singapore, the National Institutes of Health, the National Institute on Drug Abuse, the NASA Commercialization Center, and the Air Force Office of Scientific Research.

Study subjects were asked to identify letters flashing briefly in front of them. They saw either a large H or S, and each was made up of smaller Hs or Ss. Sometimes the large letter matched the smaller letters; sometimes they didn’t. Scientists asked the volunteers to identify either the smaller or the larger letters by pushing one of two buttons.

During slow responses, sleep-deprived volunteers had dramatic decreases in their higher visual cortex activity. At the same time, as expected, their frontal and parietal ‘control regions’ were less able to make their usual corrections.

Scientists also could see brief failures in the control regions during the rare lapses that volunteers had after a normal night’s sleep. However, the failures in visual processing were specific only to lapses that occurred during sleep deprivation.

The scientists theorize that this sputtering along of cognition during sleep deprivation shows the competing effects of trying to stay awake while the brain is shutting things down for sleep. The brain ordinarily becomes less responsive to sensory stimuli during sleep, Chee said.

This study has implications for a whole range of people who have to struggle through night work, from truckers to on-call doctors. “The periods of apparently normal functioning could give a false sense of competency and security when in fact, the brain’s inconsistency could have dire consequences,” Chee said.

“The study task appeared simple, but as we showed in previous work, you can’t effectively memorize or process what you see if your brain isn’t capturing that information,” Chee said. “The next step in our work is to see what we might do to improve things, besides just offering coffee, now that we have a better idea where the weak links in the system are.”

 

—————————-
Article adapted by MD Sports from original press release.
—————————-

Contact: Mary Jane Gore
Duke University Medical Center

Other authors of the study include Jiat Chow Tan, Hui Zheng, and Sarayu Parimal of the Cognitive Neuroscience Lab at the Duke-NUS Graduate Medical School; Daniel Weissman of the University of Michigan Psychology Department; David Dinges of the University of Pennsylvania School of Medicine; and Vitali Zagorodnov of the Computer Engineering Department of the Nanyang Technological University in Singapore.

Lower muscle mass and an increase in body fat are common consequences of growing older.

While exercise is a proven way to prevent the loss of muscle mass, a new study led by McMaster researcher Dr. Mark Tarnopolsky shows that taking a combination of creatine monohydrate (CrM) and conjugated linoleic acid (CLA) in addition to resistance exercise training provides even greater benefits.

The study to be published on Oct. 3 in PLoS One, an international, peer-reviewed online journal of the Public Library of Science, involved 19 men and 20 women who were 65 years or older and took part in a six-month program of regular resistance exercise training.

In the randomized double blind trial, some of the participants were given a daily supplement of creatine (a naturally produced compound that supplies energy to muscles) and linoleic acid (a naturally occurring fatty acid), while others were given a placebo. All participants took part in the same exercise program.

The exercise training resulted in improvements of functional ability and strength in all participants, but those taking the CrM and CLA showed even greater gains in muscle endurance, an increase in fat-free mass and a decrease in the percentage of body fat.

“This data confirms that supervised resistance exercise training is safe and effective for increasing strength and function in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six month period,” said Tarnopolsky, a professor of pediatrics and medicine.

This study provides functional outcomes that build on an earlier mechanistic study co-led by Tarnopolsky and Dr. S. Melov at the Buck Institute of Age Research, published in PLoS One this year, which provided evidence that six months of resistance exercise reversed some of the muscle gene expression abnormalities associated with the aging process.
—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Veronica McGuire
McMaster University

Trying to reap the health benefits of exercise? Forget treadmills and spin classes, researchers at the Salk Institute for Biological Studies may have found a way around the sweat and pain. They identified two signaling pathways that are activated in response to exercise and converge to dramatically increase endurance.

The team of scientists, led by Howard Hughes Medical Investigator Ronald M. Evans, Ph.D., a professor in the Salk Institute’s Gene Expression Laboratory report in the July 31 advance online edition of the journal Cell that simultaneously triggering both pathways with oral drugs turned laboratory mice into long-distance runners and conferred many of exercise’s other benefits.

In addition to their allure for endurance athletes, drugs that mimic the effects of exercise have therapeutic potential in treating certain muscle diseases, such as wasting and frailty, hospital patients unable to exercise, veterans and others with disabilities as well as obesity and a slew of associated metabolic disorders where exercise is known to be beneficial.

Previous work with genetically engineered mice in the Evans lab had revealed that permanently activating a genetic switch known as PPAR delta turned mice into indefatigable marathon runners. In addition to their super-endurance, the altered mice were resistant to weight gain, even when fed a high-fat diet that caused obesity in ordinary mice. On top of their lean and mean physique, their response to insulin improved, lowering levels of circulating glucose.

“We wanted to know whether a drug specific for PPAR delta would have the same beneficial effects,” says Evans. “Genetic engineering in humans, commonly known as gene doping when mentioned in connection with athletic performance, is certainly feasible but very impractical.”

An investigational drug, identified only as GW1516 (and not commercially available), fit the bill. When postdoctoral researcher and lead author Vihang A. Narkar, Ph.D., fed the substance to laboratory mice over a period of four weeks, the researchers were in for a surprise.

“We got the expected benefits in lowering fatty acids and blood glucose levels but no effect, absolutely none, on exercise performance,” says Narkar. Undeterred, he put mice treated with GW1516 on a regular exercise regimen and every day had them run up to 50 minutes on a treadmill.

Now the exact same drug that had shown no effect in sedentary animals improved endurance by 77 percent over exercise alone and increased the portion of “non-fatiguing” or “slow twitch” muscle fibers by 38 percent. The result, while very dramatic, gave rise to a vexing question: Why is exercise so important?

First and foremost, exercise depletes muscles’ energy store, a chemical known as ATP. In times of high demand, ATP releases all its energy and forms AMP. Rising AMP levels alert AMPK, a metabolic master regulator, which acts like a gas gauge that the cell is running on empty and revs up the production of ATP. “That led us to consider whether AMPK activation was the critical trigger that allowed PPAR delta to work,” recalls Narkar.

Usually, AMPK can be found in the cytoplasm, the compartment that surrounds the nucleus, but the Salk researchers’ experiment revealed that some exercise-activated AMPK molecules slip into the nucleus. There they physically interact with PPAR delta and increase its ability to turn on the genetic network that increases endurance.

“It essentially puts a turbo charge on PPAR delta, which explains why exercise is so important,” says Evans.

Then came the ultimate couch potato experiment. The researchers fed untrained mice AICAR, a synthetic AMP analog that directly activates AMPK. After only four weeks and without any prior training, these mice got up and ran 44 percent longer than untreated, untrained mice. “That’s as much improvement as we get with regular exercise,” says Narkar.

“Exercise in a pill” might sound tempting to couch potatoes and Olympic contenders alike, but the dreams of the latter might be cut short. Evans developed a test that can readily detect GW1516 and its metabolites as well as AICAR in blood and urine and is already working with officials at the World Anti-Doping Association, who are racing to have a test in place in time for this year’s Summer Olympics.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Gina Kirchweger
Salk Institute

The study was supported by the Howard Hughes Medical Institute, the Hillblom Foundation and the National Institute of Health.

Researchers who contributed to the work include postdoctoral researchers Michael Downes, Ph.D., Ruth T. Yu, Ph.D., doctoral candidate Emi Embler, B.S., research associates Michael C. Nelson, B.S., Yuhua Zou, M.S., Ester Banayo, and Henry Juguilon, in the Gene Expression Laboratory, doctoral candidate M. Mihaylova, and assistant professor Reuben Shaw, Ph.D., in the Molecular and Cell Biology Laboratory, assistant professor Yong-Xu Wang, Ph.D., at the University of Massachusetts Medical School, Massachusetts, and professor Heonjoon Kang, Ph.D., at the School of Earth and Environmental Sciences, Seoul National University, South Korea.

And it increases endurance to run a mile and decreases inflammation

The Salk Institute scientist who earlier discovered that enhancing the function of a single protein produced a mouse with an innate resistance to weight gain and the ability to run a mile without stopping has found new evidence that this protein and a related protein play central roles in the body’s complex journey to obesity and offer a new and specific metabolic approach to the treatment of obesity related disease such as Syndrome X (insulin resistance, hyperlipidemia and atherosclerosis).

Dr. Ronald M. Evans, a Howard Hughes Medical Investigator at The Salk Institute’s Gene Expression Laboratory, presented two new studies (date) at Experimental Biology 2005 in the scientific sessions of the American Society for Biochemistry and Molecular Biology. The studies focus on genes for two of the nuclear hormone receptors that control broad aspects of body physiology, including serving as molecular sensors for numerous fat soluble hormones, Vitamins A and D, and dietary lipids.

The first study focuses on the gene for PPARd, a master regulator that controls the ability of cells to burn fat. When the “delta switch” is turned on in adipose tissue, local metabolism is activated resulting in increased calorie burning. Increasing PPARd activity in muscle produces the “marathon mouse,” characterized by super-ability for long distance running. Marathon mice contain altered muscle composition, which doubles its physical endurance, enabling it to run an hour longer than a normal mouse. Marathon mice contain increased levels of slow twitch (type I) muscle fiber, which confers innate resistance to weight gain, even in the absence of exercise.

Additional work to be reported at Experimental Biology looks at another characteristic of PPARd: its role as a major regulator of inflammation. Coronary artery lesions or atherosclerosis are thought to be sites of inflammation. Dr. Evans found that activation of PPARd suppresses the inflammatory response in the artery, dramatically slowing down lesion progression. Combining the results of this new study with the original “marathon mouse” findings suggests that PPARd drugs could be effective in controlling atherosclerosis by limiting inflammation and at the same time promoting improved physical performance.

Dr. Evans says he is very excited about the therapeutic possibilities related to activation of the PPARd gene. He believes athletes, especially marathon runners, naturally change their muscle fibers in the same way as seen in the genetically engineered mice, increasing levels of fat-burning muscle fibers and thus building a type of metabolic ‘shield” that keeps them from gaining weight even when they are not exercising.

But athletes do it through long periods of intensive training, an approach unavailable to patients whose weight or medical problems prevent them from exercise. Dr. Evans believes activating the PPARd pathway with drugs (one such experimental drug already is in development to treat people with lipid metabolism) or genetic engineering would help enhance muscle strength, combat obesity, and protect against diabetes in these patients.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Sarah Goodwin
Federation of American Societies for Experimental Biology

Energy bars, touted for improving athletic performance while providing the right combination of essential nutrients, may not always give endurance athletes the boost they expect.An Ohio State University researcher compared two popular energy bars and found that one of the bars didn’t give the moderate increase in blood sugar known to enhance performance in endurance athletes. Instead, its effect was much like a candy bar – giving a big rush of sugar to the blood, followed by a sharp decline.

“Theoretically, energy bars produce more moderate increases and decreases in blood sugar levels than a typical candy bar,” said Steve Hertzler, an associate professor of medical dietetics at Ohio State. “But these claims aren’t necessarily valid.” His study appears in a recent issue of the Journal of the American Dietetic Association.

Hertzler wanted to know how energy bars affected blood glucose levels. Glucose is a sugar that provides energy to the body’s cells – for example, red-blood cells and most parts of the brain derive most of their energy from glucose.

“Athletes – especially those involved in endurance sports – want to enhance performance, and energy bars claim to help keep blood sugar levels at a moderate level,” Hertzler said.

Volunteers had to fast for at least 12 hours before taking part in each of four experiments. Then, they ate one of four experimental “meals” consisting of either four slices of white bread; a Snickers bar; an Ironman PR Bar; or a PowerBar. Each experimental meal provided the same amount of carbohydrates (50 grams.)

Hertzler then tested the effects these foods had on blood glucose levels at 15-minute intervals for up to two hours after each experimental meal. The volunteers had to wait at least 24 hours between each experimental meal.

Hertzler measured each subject’s blood samples for glucose levels, to determine which food most raised blood sugar levels.

Both energy bars caused blood glucose levels to peak at 30 minutes, while levels peaked at 45 minutes after the bread and candy bar were consumed. Blood glucose levels declined steadily throughout the duration of testing for all foods but the Ironman PR Bar. This bar caused blood glucose rates to remain fairly steady, probably because of the moderate carbohydrate level of the bar, according to Hertzler.

“Though blood glucose rates peaked at 30 minutes with both bars, the high-carbohydrate energy bar – the PowerBar – caused a much sharper decline,” Hertzler said. “In fact, the decline was sharper than with the candy bar.” Much of the energy derived from the bread and the candy bar came from carbohydrate and the same was true for the PowerBar. While the bar is low in protein and fat, more than 70 percent of it is made up of carbohydrate (such as high-fructose corn syrup; oat bran; and brown rice). In contrast, 40 percent of the Ironman PR is comprised of carbohydrate (high fructose corn syrup and fructose.) The rest of the bar was comprised of 30 percent fat and 30 percent protein.

“The composition of this bar may have been responsible for the diminished blood glucose response,” Hertzler said. “Athletes involved in short-duration events who want a quick energy boost should eat a high-carbohydrate energy bar or a candy bar,” he suggests. “However, endurance athletes would do well to consume an energy bar with a moderate carbohydrate level.”

Hertzler conducted this study while at Kent State University in Kent, Ohio. He is continuing similar research at Ohio State.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Steve Hertzler
Ohio State University

Editor’s note: This research was funded by a grant from Kent State University. The researcher received no funding from either energy bar manufacturer.

New research on the effects of the female sex hormone estrogen in the brain lend credence to what many women have suspected about the hormonal changes that accompany aging: Menopause can make you fat.Scientists long have sought to understand how changes in hormones during menopause could account for the increase in appetite and accompanying weight gain that often occurs among aging women.

In a series of animal experiments described today at the 234th national meeting of the American Chemical Society, the world’s largest scientific society, researchers showed how estrogen receptors located in the hypothalamus serve as a master switch to control food intake, energy expenditure and body fat distribution. When these receptors are destroyed, the animals immediately begin to eat more food, burn less energy and pack on pounds.

This research seems to support a link between estrogen and regulation of obesity, especially the dangerous accumulation of abdominal fat linked to heart disease, diabetes, and cancer, says Deborah J. Clegg, Ph. D., assistant professor of psychiatry at the University of Cincinnati Academic Health Center, who is directing the studies.

The findings may also help scientists develop more targeted hormone replacement therapies, capable of stimulating estrogen receptors in one part of the brain or body while dampening it in the next, Clegg says.

Estrogen receptors are located on cells throughout a woman’s body. Previous studies have shown that one type of estrogen receptor, known as estrogen receptor alpha or ER-alpha, plays a role in regulating food intake and energy expenditure. But scientists have been unable to pinpoint exactly where these fat-regulating receptors reside or how they work to govern these behaviors.

To determine the effect of dwindling estrogen levels in the brain, Clegg and her colleagues are focusing on two ER-alpha rich regions located in the hypothalamus, an area of the brain that controls body temperature, hunger and thirst. The first region, called the ventromedial nucleus or VMN, is a key center for energy regulation.

Using a relatively new gene-silencing technique called RNA interference, the researchers in earlier research deactivated the alpha-receptors in the VMN. The estrogen receptors in other regions of the brain maintained their normal capacity.

When estrogen levels in the VMN dipped, the animals’ metabolic rate and energy levels also plummeted. The findings show the animals quickly developed an impaired tolerance to glucose and a sizable weight gain, even when their caloric intake remained the same. What’s more, the excess weight went straight to their middle sections, creating an increase in visceral fat.

The findings suggested that the ER-alpha in this region plays an essential role in controlling energy balance, body fat distribution and normal body weight.

Clegg now plans to perform a similar experiment to deactivate ER-alpha in the arcuate nucleus region of the hypothalamus. This region contains two populations of neurons: one puts the brake on food intake and the other stimulates food intake. Clegg anticipates that a loss of estrogen in this region may create an increase in the animals’ appetites as well as their weight.

Clegg says her studies address an area that is sorely needed given the incidence and impact of gender differences in obesity and its complications.

“The accumulation of abdominal fat puts both men and women at a heightened risk of cardiovascular disease, diabetes, and insulin resistance,” she says. “Women are protected from these negative consequences as long as they carry their weight in their hips and saddlebags. But when they go through menopause and the body fat shifts to the abdomen, they have to start battling all of these medical complications.”

By identifying the critical brain regions that determine where body fat is distributed, Clegg says her findings may help scientists design hormone replacement therapies to better manage and manipulate estrogen levels.

“If we could target those critical regions and estrogen receptors associated with weight gain and energy expenditure, we could perhaps design therapies that help women sidestep many of the complications brought on by the onset of menopause,” she says.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Charmayne Marsh
American Chemical Society

 The American Chemical Society — the world’s largest scientific society — is a nonprofit organization chartered by the U.S. Congress and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Deborah J. Clegg, Ph.D., is assistant professor of psychiatry at the University of Cincinnati Academic Health Center in Cincinnati, Ohio.