Archive for the ‘Burn Fat’ Category

Golfers averaged more than 13,000 steps in walking to play 18 holes, and even those using carts logged more than 6,000 steps. Guidelines published by ACSM and others recommend walking 10,000 steps per day to maintain cardiovascular fitness and effectively control weight.

“This illustrates an enjoyable way to get the health benefits of walking,” said Cristina Sanders, lead researcher for the study, who presented the findings as part of her graduate work at the University of Colorado, Colorado Springs. “Some people play golf for 40 or 50 years, and it can be quite beneficial.” While previous studies have measured the energy expenditure of individual golfers, this study thought to be the first using pedometers.

Researchers asked golfers at three courses to wear a pedometer while they played 18 holes and noted their height, weight, and handicap. They also noted number of players in each subject’s group, whether he would walk or use a cart, and which tee box he played. After the round, researchers recorded how many steps each golfer walked.

“We had expected that golfers using a cart might take one-quarter as many steps as those who walked the course,” Sanders said. “We were surprised to find that, depending on the course, cart users logged up to half as many steps.” Measuring each course by GPS (global positioning satellite) allowed researchers to calculate minimum course distances, including tee-to-green, green-to-tee, and intermediate path point distances (bridges, paths around lakes, etc.) for each tee box on every hole. These minimum course distances averaged 25 percent longer than the published course playing distances.

Walking golfers and cart golfers took 13,145 +/- 1,736 steps and 6,280 +/- 1,428 steps, respectively. Interestingly, Sanders and her colleagues found no correlation between step count and the golfers’ height, handicap or tee box. Self-reported weight of walking golfers, though, averaged about 8.5 pounds less than that of golfers who used carts.

The golfers in Sanders’ study were all men. She proposed that future research include women, who often play from different tees.  Also of interest, she said, would be a large-scale look into golfers’ energy expenditure, accounting for the extra effort associated with carrying clubs or using pull carts.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Communications and Public Information
American College of Sports Medicine

Don’t drink alcohol. Take vitamins. Avoid eating eggs. We’ve heard these pieces of nutritional advice for years – but are they accurate?

Not necessarily, say two exercise physiologists who presented at the American College of Sports Medicine (ACSM) 11th-annual Health & Fitness Summit & Exposition in Dallas, Texas. Wendy Repovich, Ph.D., FACSM, and Janet Peterson, Dr.P.H., FACSM, set out to debunk the “Top 10 Nutrition Myths.”

According to Repovich and Peterson, these nutrition myths are:

10. Eating carbohydrates makes you fat. Cutting carbs from your diet may have short-term weight loss benefits due to water loss from a decrease in carbohydrate stores, but eating carbs in moderation does not directly lead to weight gain. The body uses carbs for energy, and going too long without them can cause lethargy.

9. Drink eight, 8-oz. glasses of water per day. You should replace water lost through breathing, excrement and sweating each day – but that doesn’t necessarily total 64 ounces of water. It’s hard to measure the exact amount of water you have consumed daily in food and drink, but if your urine is pale yellow, you’re doing a good job. If it’s a darker yellow, drink more H2O.

8. Brown grain products are whole grain products. Brown dyes and additives can give foods the deceiving appearance of whole grain. Read labels to be sure a food is whole grain, and try to get three-ounce equivalents of whole grains per day to reduce the risk of heart disease, diabetes, and stroke.

7. Eating eggs will raise your cholesterol. This myth began because egg yolks have the most concentrated amount of cholesterol of any food. However, there’s not enough cholesterol there to pose health risks if eggs are eaten in moderation. Studies suggest that eating one egg per day will not raise cholesterol levels and that eggs are actually a great source of nutrients.

6. All alcohol is bad for you. Again, moderation is key. Six ounces of wine and 12 ounces of beer are considered moderate amounts, and should not pose any adverse health effects to the average healthy adult. All alcohol is an anticoagulant and red wine also contains antioxidants, so drinking a small amount daily can be beneficial.

5. Vitamin supplements are necessary for everyone. If you eat a variety of fruits, vegetables, and whole grains, along with moderate amounts of a variety of low-fat dairy and protein and the right quantity of calories, you don’t need to supplement. Most Americans do not, so a multi-vitamin might be good. Special vitamin supplements are also recommended for people who are pregnant or have nutritional disorders.

4. Consuming extra protein is necessary to build muscle mass. Contrary to claims of some protein supplement companies, consuming extra protein does nothing to bulk up muscle unless you are also doing significant weight training at the same time. Even then the increased requirement can easily come from food. A potential problem with supplements is the body has to work overtime to get rid of excess protein, and can become distressed as a result.

3. Eating fiber causes problems if you have irritable bowel syndrome (IBS). There are two kinds of fiber: soluble and insoluble. Insoluble fiber can cause problems in IBS sufferers; soluble fiber, however, is more easily absorbed by the body and helps prevent constipation for those with IBS. Soluble fiber is found in most grains.

2. Eating immediately after a workout will improve recovery. Endurance athletes need to take in carbohydrates immediately after a workout to replace glycogen stores, and a small amount of protein with the drink enhances the effect. Drinking low-fat chocolate milk or a carbohydrate drink, like Gatorade, is better for the body, as they replace glycogen stores lost during exercise. Protein is not going to help build muscle, so strength athletes do not need to eat immediately following their workout.

1. Type 2 diabetes can be prevented by eating foods low on the glycemic index. High levels of glucose are not what “cause” diabetes; the disease is caused by the body’s resistance to insulin. Foods high on the glycemic index can cause glucose levels to spike, but this is just an indicator of the presence of diabetes, not the root cause.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Communications and Public Information
American College of Sports Medicine

The American College of Sports Medicine is the largest sports medicine and exercise science organization in the world. More than 20,000 International, National and Regional members are dedicated to promoting and integrating scientific research, education and practical applications of sports medicine and exercise science to maintain and enhance physical performance, fitness, health and quality of life.

Lower muscle mass and an increase in body fat are common consequences of growing older.

While exercise is a proven way to prevent the loss of muscle mass, a new study led by McMaster researcher Dr. Mark Tarnopolsky shows that taking a combination of creatine monohydrate (CrM) and conjugated linoleic acid (CLA) in addition to resistance exercise training provides even greater benefits.

The study to be published on Oct. 3 in PLoS One, an international, peer-reviewed online journal of the Public Library of Science, involved 19 men and 20 women who were 65 years or older and took part in a six-month program of regular resistance exercise training.

In the randomized double blind trial, some of the participants were given a daily supplement of creatine (a naturally produced compound that supplies energy to muscles) and linoleic acid (a naturally occurring fatty acid), while others were given a placebo. All participants took part in the same exercise program.

The exercise training resulted in improvements of functional ability and strength in all participants, but those taking the CrM and CLA showed even greater gains in muscle endurance, an increase in fat-free mass and a decrease in the percentage of body fat.

“This data confirms that supervised resistance exercise training is safe and effective for increasing strength and function in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six month period,” said Tarnopolsky, a professor of pediatrics and medicine.

This study provides functional outcomes that build on an earlier mechanistic study co-led by Tarnopolsky and Dr. S. Melov at the Buck Institute of Age Research, published in PLoS One this year, which provided evidence that six months of resistance exercise reversed some of the muscle gene expression abnormalities associated with the aging process.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Veronica McGuire
McMaster University

Steroid use starts early, decreases as teens grow older

Participation in sports with real or perceived weight requirements, such as ballet, gymnastics, and wrestling, is strongly associated with unhealthy weight control behaviors and steroid use in teens, according to researchers at the University of Minnesota.

Research published in the March 2007 issue of the Journal of the American Dietetic Association found nearly 6 percent of males between the ages of 12 and 18 who participated in weight-related sports induced vomiting within the week prior to being surveyed, as compared to only 0.9 percent of males who did not participate in weight- related sports. The use of diuretics within the previous year was reported by 4.2 percent of males in a weight-related sport, as opposed to 0.8 percent who did not participate in a weight-related sport.

Steroid use was reported in 6.8 percent of females who reported participating in weight-related sports, compared to 2.3 percent of those that weren’t active in a weight-related sport. Vomiting and using laxatives were also more likely in girls who were active in weight-related sports.

“The link between unhealthy weight-control behaviors and weight-related sports, especially in boys, is alarming,” said Marla Eisenberg, Sc.D., M.P.H., assistant professor at the University of Minnesota Medical School Department of Pediatrics. “Parents and coaches should emphasize skill and talent instead of weight and body image and educate teens about the negative health effects of steroid use and extreme weight control.” Researchers surveyed over 4,500 middle and high school students from the Minneapolis/St. Paul metro area. The students were asked if they had engaged in self-induced vomiting, used diet pills or laxatives, or used steroids within the previous week and year.

Steroid use in teens peaks at young age, but overall use has not increasedIn a separate study, published in the March 2007 issue of Pediatrics, University of Minnesota researchers surveyed the same teen population again five years later. They found that steroid use among teens peaked at 5 percent in middle school boys and girls, but as they grew older, steroid use declined significantly.

“It is encouraging to see that the majority of young people who reported using steroids in 1999 stopped using them as they got older,” said Patricia van den Berg, Ph.D., lead author of the study from the University of Minnesota School of Public Health. “But even given this decline, between one and three in 100 teens still reported using steroids within the last year when asked again 5 years later.”

Researchers conducted the longitudinal study with more than 2,000 adolescents to examine changes in eating patterns, weight, physical activity, and related factors over five years. Participants completed two surveys, one in 1999 and one in 2004, to determine if there were changes in steroid use.

Overall, 1.7 percent of boys and 1.4 percent of girls between the ages of 15 and 23 reported steroid use in 2004. Those that reported use early on were 4 to 10 times more likely to use later in life.

Boys who reported wanting a larger body in 1999, as well as those who said they used healthy weight-control behaviors, were more likely to take steroids when they were older. In contrast, girls who were heavier, less satisfied with their weight, and who had limited knowledge of healthy eating and exercise habits were more likely to take steroids as they grew older.

The study found no significant change in steroid use overall among teens from 1999-2004. “Our research suggests that the increased media coverage surrounding steroid use among athletes in recent years hasn’t led to a huge rise in steroid use in young people,” said van den Berg.

Anabolic-androgenic steroids are synthetic derivatives of the male hormone, testosterone. They are typically taken to increase muscle mass and strength for either improved sports performance or enhanced appearance. These steroids have significant negative effects on the body’s muscles, bones, heart, reproductive system, liver, and psychological state.

—————————-
Article adapted by MD Sports Weblog from original press release.
—————————-

Contact: Liz Wulderk
University of Minnesota 
 

Project EAT: Eating Among Teens Both studies are part of Project EAT: Eating Among Teens, research designed to investigate the factors influencing the eating habits of adolescents, to determine if youth are meeting national dietary recommendations, and to explore dieting, physical activity patterns, and related factors among youth. The project is designed to build a greater understanding of the socio-environmental, personal, and behavioral factors associated with diet and weight-related behaviors during adolescence so more effective nutrition interventions can be developed.

The studies were supported by the Maternal and Child Health Program, Health Resources and Services Administration, the Department of Health and Human Services, and a training grant from the Centers for Disease Control.

Myostatin (MSTN) is a transforming growth factor-ß (TGF-ß) family member that plays a critical role in regulating skeletal muscle mass [1]. Mice engineered to carry a deletion of the Mstn gene have about a doubling of skeletal muscle mass throughout the body as a result of a combination of muscle fiber hyperplasia and hypertrophy [2]. Moreover, loss of myostatin activity resulting either from postnatal inactivation of the Mstn gene [3], [4] or following administration of various myostatin inhibitors to wild type adult mice [5][7] can also lead to significant muscle growth. Hence, myostatin appears to play as least two distinct roles, one to regulate the number of muscle fibers that are formed during development and a second to regulate growth of muscle fibers postnatally. The function of myostatin appears to have been conserved across species, as inactivating mutations in the myostatin gene have been demonstrated to cause increased muscling in cattle [8][11] , sheep [12], dogs [13] and humans [14]. As a result, there has been considerable effort directed at developing strategies to modulate myostatin activity in clinical settings where enhancing muscle growth may be beneficial. In this regard, loss of myostatin activity has been demonstrated to improve muscle mass and function in dystrophic mice [15][17] and to have beneficial effects on fat and glucose metabolism in mouse models of obesity and type II diabetes [18].

Myostatin is synthesized as a precursor protein that undergoes proteolytic processing to generate an N-terminal propeptide and a C-terminal dimer, which is the biologically active species. Following proteolytic processing, the propeptide remains bound to the C-terminal dimer and maintains it in an inactive, latent complex [6], [19], [20], which represents one of the major forms of myostatin that circulates in the blood [21], [22]. In addition to the propeptide, other binding proteins are capable of regulating myostatin activity in vitro, including follistatin [19], [21], FLRG [22], and Gasp-1 [23]. We previously showed that follistatin can also block myostatin activity in vivo; specifically, we showed that follistatin can ameliorate the cachexia induced by high level expression of myostatin in nude mice [21] and that transgenic mice expressing follistatin in muscle have dramatic increases in muscle mass [19]. Here, I show that overexpression of follistatin can also cause substantial muscle growth in mice lacking myostatin, demonstrating that other TGF-ß related ligands normally cooperate with myostatin to suppress muscle growth and that the capacity for enhancing muscle growth by targeting this signaling pathway is much larger than previously appreciated.

Results

Increased muscle mass in transgenic mice expressing FLRG

Previous studies have identified several proteins that are normally found in a complex with myostatin in the blood [22], [23]. One of these is the follistatin related protein, FLRG, which has been demonstrated to be capable of inhibiting myostatin activity in vitro. To determine whether FLRG can also inhibit myostatin activity in vivo, I generated a construct in which the FLRG coding sequence was placed downstream of a myosin light chain promoter/enhancer. From pronuclear injections of this construct, a total of four transgenic mouse lines (Z111A, Z111B, Z116A, and Z116B) were obtained containing independently segregating insertion sites. Each of these four transgenic lines was backcrossed at least 6 times to C57 BL/6 mice prior to analysis in order to control for genetic background effects. Northern analysis revealed that in three of these lines the transgene was expressed in skeletal muscles but not in any of the non-skeletal muscle tissues examined (Figure 1); in the fourth line, Z111B, the expression of the transgene was below the level of detection in these blots. As shown in Table 1, all four lines exhibited significant increases in muscle weights compared to wild type control mice. These increases were observed in all four muscles that were examined as well as in both sexes. Moreover, the rank order of magnitude of these increases correlated with the rank order of expression levels of the transgene; in the highest-expressing line, Z116A, muscle weights were increased by 57–81% in females and 87–116% in males compared to wild type mice. Hence, FLRG is capable of increasing muscle growth in a dose-dependent manner when expressed as a transgene in skeletal muscle.

The research was funded by grants from the NIH and the Muscular Dystrophy Association and by a gift from Merck Research Laboratories.

See http://www.jhu.edu/sejinlee/%20for%20more%20information for more information.
Citation: Lee S-J (2007) Quadrupling Muscle Mass in Mice by Targeting TGF-ß Signaling Pathways. PLoS ONE 2(8): e789. doi:10.1371/journal.pone.0000789

LINK TO THE PUBLISHED ARTICLE http://www.plosone.org/doi/pone.0000789

Source: Nick Zagorski
Johns Hopkins Medical Institutions

Athletes for years have found that the the low-glycemic carbohydrate Glycoose™ promotes utilization of body fat as energy source and thus improves metabolic fat oxidation in comparison to other carbohydrates. Glycose™ helps provide a sustained supply of energy from low glycemic carbloyhdrates , while at the same time supporting fat mobilization.

Time after time athletes report sustained energy to compete and finish their event in the absence of muscle fatique and cramps.

In comparing the effects of a Glycose™ -to a high fructose corn syrup and sucrose -based energy drinks, after consumption, athletes found they had longer sustained energy for competition and training and noticed lower body fat percentages after a few weeks. Moreover, a higher glycogen storage rate of energy production from carbohydrates was noted, along with the fat burning effect.

The majority of non-medical anabolic-androgenic steroid (AAS) users are not cheating athletes or risk-taking teenagers. According to a recent survey, containing the largest sample to date and published in the online open access publication, Journal of the International Society of Sports Nutrition, the typical male user is about 30 years old, well-educated, and earning an above-average income in a white-collar occupation. The majority did not use steroids during adolescence and were not motivated by athletic competition or sports performance.

The study, conducted by a collaboration of researchers from around the country coordinated by Jason Cohen, Psy.D. candidate, used a web-based survey of nearly 2,000 US males. Whereas athletes are tempted to take anabolic steroids to improve sports performance, the study suggests that physical self-improvement motivates the unrecognized majority of non-medical AAS users who particularly want to increase muscle mass, strength, and physical attractiveness. Other significant but less highly ranked factors included increased confidence, decreased fat, improved mood and attraction of sexual partners.

Although often considered similar to abusers of narcotics and other illicit drugs (e.g., heroin or cocaine), non-medical AAS users are remarkably different. These users follow carefully planned drug regimens in conjunction with a healthy diet, ancillary drugs and exercise. As opposed to the spontaneous and haphazard approach seen in abusers of psychotropic drugs, everything is strategically planned to maximize benefits and minimize harm. “This is simply not a style or pattern of use we typically see when we examine substance abuse” said Jack Darkes, Ph.D., one of the authors. “The notions of spontaneous drug seeking and loss of control do not apply to the vast majority of AAS users,” added co-author Daniel Gwartney, M.D.

“These findings question commonly held views of typical AAS users and their underlying motivations,” said Rick Collins, one of the study’s authors. “The focus on ‘cheating’ athletes and at risk youth has led to irrelevant policy as it relates to the predominant group of non-medical AAS users. The vast majority of AAS users are not athletes and hence, are not likely to view themselves as cheaters. The targeting of athletes through drug testing and other adolescent or sports-based interventions has no bearing on non-competitive adult users.” The study concludes that these AAS users are a driven and ambitious group dedicated to gym attendance, diet, occupational goals and educational attainment. “The users we surveyed consider that they are using directed drug technology as one part of a strategy for physical self-improvement within a health-centered lifestyle,” said Collins. “Effective public policy should begin by accurately identifying who’s using steroids and why. We hope our research – the largest adult survey of non-medical AAS use we know of – is a significant step forward in that direction.”

—————————-
Article adapted by MD Only Sports Weblog from original press release.
—————————-

Contact: Charlotte Webber
BioMed Central

Article:
A League of Their Own: Demographics, Motivations and Patterns of Use of 1,955 Male Adult Non-Medical Anabolic Steroid Users in the United States
Jason Cohen, Rick Collins, Jack Darkes and Dan Gwartney
Journal of the International Society of Sports Nutrition (in press)

During embargo, article available at: http://www.jissn.com/imedia/1374735248154681_article.pdf?random=454689

After the embargo, article available from the journal website at: http://www.jissn.com