Archive for May 1, 2009

Experts at The University of Nottingham are to investigate the effect of nutrients on muscle maintenance in the hope of determining better ways of keeping up our strength as we get old.

The researchers, based at the School of Graduate Entry Medicine and Health in Derby, want to know what sort of exercise we can take and what food we should eat to slow down the natural loss of skeletal muscle with ageing.

The team from the Department of Clinical Physiology, which has over 20 years experience in carrying out this type of metabolic study, need to recruit 16 healthy male volunteers in two specific age groups to help in it’s research.

Skeletal muscles make up about half of our body weight and are responsible for controlling movement and maintaining posture. However, at around 50 years of age our muscles begin to waste at approximately 0.5 per cent to one per cent a year. It means that an 80 year old may only have 70 per cent of the muscle of a 50 year old.

Since the strength of skeletal muscle is proportional to muscle size, such wasting makes it harder to carry out daily activities requiring strength, such as climbing stairs and leads to a loss of independence and an increased risk of falls and fractures.

In order for skeletal muscles to maintain their size, the large reservoirs of muscle protein require constant replenishment in the way of amino acids from protein contained within the food we eat. In fact, amino acids from our food act not only as the building blocks of muscle proteins but also actually ‘tell’ our muscle cells to build proteins.

Recent research from the clinical physiology team has shown that the cause of muscle wasting with ageing appears to be an attenuation of muscle building in response to protein feeding. In other words, as we age we lose the ability to covert the protein in the food we eat in to muscle tissue. The proposed research will investigate the mechanisms responsible for this deficit.

Dr Philip Atherton, who is currently recruiting volunteers, said: “I am really excited to be involved in this project because if we can determine ways to better maintain muscle mass as we age it will greatly benefit us all.”

The researchers are looking for 16 healthy, non-smoking, male volunteers aged 18 to 25 and 65 to 75.

Initially, the volunteers will undergo a health screening and then on a different day, under the supervision of a doctor, will be infused with an amino acid mixture to simulate feeding along with a ‘tagged’ amino acid that allows them to assess muscle building. To make these measures, blood samples will be taken from the arm and muscle biopsies from the thigh muscle under local anaesthesia. Volunteers will receive an honorarium to cover their expenses.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Lindsay Brooke
University of Nottingham

 

The study will take place at The University of Nottingham’s Medical School which based at the City Hospital in Derby.

Advertisements

Investigators in The Research Institute at Nationwide Children’s Hospital have identified the role of a protein that could potentially lead to new clinical treatments to combat musculoskeletal diseases, including Duchenne muscular dystrophy (DMD).

Results of these studies appear in the March 11, 2008 issue of the Proceedings of the National Academy of Sciences.

These studies, led by Brian Kaspar, PhD, a principal investigator in the Center for Gene Therapy at The Research Institute and an assistant professor of Pediatrics at The Ohio State University, focus on a protein called follistatin (FS). Using a single injection, gene-delivery strategy involving FS, investigators treated the hind leg muscles of mice. Results showed increased muscle size and strength, quadruple that of mice treated with proteins other than FS. The muscle enhancements were shown to be well-tolerated for more than two years.

According to Dr. Kaspar, increased muscle mass and strength were also evident when this strategy was tested using a model of DMD. Apart from the injected hind leg muscles, strengthening effects were also shown in the triceps. In addition, fibrosis, abnormal formation of scar tissue and a hallmark of muscular dystrophy, was decreased in FS-treated animals.

“We believe this new FS strategy may be more powerful than other strategies due to its additional effects, including its ability to reduce inflammation,” said Dr. Kaspar.

The strategy showed no negative effects on the heart or reproductive ability of either males or females. The results were also replicated in older animals, suggesting that this strategy could be useful in developing clinical treatments for older DMD patients.

“This research provides evidence of multiple potential treatment applications for muscle diseases including, but not limited to, muscular dystrophy,” said Jerry Mendell, MD, director of the Center for Gene Therapy at The Research Institute, a co-author on the study, and professor of Pediatrics in Neurology and Pathology at The Ohio State University. “These results offer promise for treatment of potentially any muscle-wasting disease, including muscle weakness due to other illnesses, aging, and inflammatory diseases such as polymyositis. Our next step is to pursue clinical trials.”

The Research Institute at Nationwide Children’s Hospital has a patent pending on the FS technique due to the major role it may play for muscular dystrophy treatment and other muscle-wasting diseases.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Pam Barber/Mary Ellen Fiorino
Nationwide Children’s Hospital

USC study finds combining resistance training and androgens gives more muscular bang for the buck

PHILADELPHIA (June 19, 2003)-Men who take supplemental androgens-the male hormone testosterone or similar medications-increase their strength by adding muscle mass, but androgens alone do not pack more might into the muscles, according to studies presented today by University of Southern California researchers.

Treatment with androgens increases lean body mass-which encompasses everything in the body but bone and fat-and strength increases proportionately with the amount of muscle added, says E. Todd Schroeder, Ph.D., postdoctoral fellow in the Department of Medicine at the Keck School of Medicine of USC and adjunct assistant professor in the USC Department of Biokinesiology and Physical Therapy. Schroeder presented his findings at the Endocrine Society’s 85th Annual Meeting.

However, when men use androgen therapy combined with resistance training, such as weightlifting, their gains in strength may far outpace the amount of muscle that can be added with androgens alone. Each muscle cell packs a bigger punch, a concept known as improved muscle quality.

“The results of androgen therapy alone on muscle and strength are not necessarily bad, but they are not optimal,” Schroeder says. “The men did improve their strength, but it was proportional to the muscle mass they added.”

The findings wield health implications beyond the stereotypes of muscle-bound bodybuilders. Schroeder and his colleagues are studying the usefulness of androgens and exercise in helping maintain muscle strength, muscle power and physical function among seniors, for example. They also have studied androgen therapy’s effectiveness in battling wasting among HIV-positive patients.

In their recent study, Schroeder and USC colleagues Michael Terk, M.D., and Fred R. Sattler, M.D., looked at both young men and seniors. They followed two groups: 33 seniors ranging from their mid-60s to late 70s, and 23 HIV-positive men ranging from their early 30s to late 40s.

The younger men were randomly assigned to get 600 milligrams (mg) each week of nandrolone alone or in combination with resistance training. The older men were randomly assigned to receive 20 mg a day of oxandrolone or a placebo. These pharmacologic androgen doses were given over 12 weeks.

Researchers determined maximal strength-the most weight a participant could safely lift or push-using leg press, leg extension and leg flexion machines.

The researchers also measured the cross-sectional area of participants’ thighs and the lean body mass of their lower extremities by magnetic resonance imaging, or MRI. They then determined the strength that participants exerted for each unit of muscle (muscle quality) and how muscle quality changed over time.

Androgens alone increased lean body mass and maximum strength in both groups of men, but “gains were modest,” Schroeder says, and muscle quality did not change, since the muscle size and strength both increased proportionately. However, among those using nandrolone and undergoing resistance training, muscle quality improved significantly: Gains in strength were much greater than the gains that could occur from muscle-mass increase alone.

“It is clear from our studies and others that resistance training is critical for increasing muscle quality, but the effects can probably be augmented with androgens,” Schroeder says. “In addition, not everyone can do resistance training, and a short course of androgens can help get people stronger and more functional.”

Finally, results provide researchers insight into how to better design future studies to test strategies to best preserve and even improve muscle strength and physical function among seniors. Similar studies will be important for other types of patients who experience muscle loss and frailty, such as those with cancer, chronic lung disease, chronic renal failure and other conditions.

———————————–
Article adapted by MD Sports from original press release.
———————————–

Contact: Jon Weiner
University of Southern California

Grants by the National Institute of Diabetes & Digestive & Kidney Diseases and the National Center for Research Resources (General Clinical Research Center) supported the research. Bio Technology General Corp., which makes Oxandrin (oxandrolone), also supported part of the research.

Edward T. Schroeder, Michael Terk and Fred R. Sattler, “Pharmacological Doses of Androgen Do Not Improve Muscle Quality in Young or Older Men: Results from Two Studies,” Endocrine Society’s 85th Annual Meeting, poster P3-212, presentation 11 a.m., June 21. Findings released at news conference 1:30 p.m., June 19.

It’s an inevitable truth: as we get older, our muscles deteriorate and we become weaker. Not only can this be an immensely frustrating change, but it can also have many other, more serious implications. We become clumsier and begin to have more falls, often resulting in broken bones or even more severe injuries. There is wide interest in this phenomenon, but to date, the majority of research has focussed on therapies for older patients with advanced symptoms. Now one study, led by Dr Alexandra Sänger from the University of Salzburg, is taking a new approach: scientists are examining the effects of different exercise regimes in menopausal women, with the aim of developing new strategies for delaying and reducing the initial onset of age related muscle deterioration. Results will be presented on Monday 7th July at the Society for Experimental Biology’s Annual Meeting in Marseille [Poster Session A5].

Dr Sänger’s research group has investigated two particular methods of physical training. Hypertrophy resistance training is a traditional approach designed to induce muscle growth whereas ‘SuperSlow®’ is a more recently devised system which involves much slower movement and fewer repetitions of exercises, and was originally introduced especially for beginners and for rehabilitation. “Our results indicate that both methods increase muscle mass at the expense of connective and fatty tissue, but contrary to expectations, the SuperSlow® method appears to have the greatest effect,” reveals Dr Sänger. “These findings will be used to design specific exercise programmes for everyday use to reduce the risk of injury and thus significantly contribute to a better quality of life in old age.”

The study focussed on groups of menopausal women aged 45-55 years, the age group in which muscle deterioration first starts to become apparent. Groups undertook supervised regimes over 12 weeks, based on each of the training methods. To see what effect the exercise had, thigh muscle biopsies were taken at the beginning and end of the regimes, and microscopically analysed to look for changes in the ratio of muscle to fatty and connective tissue, the blood supply to the muscle, and particularly for differences in the muscle cells themselves. “The results of our experiments have significantly improved our understanding of how muscles respond to different forms of exercise,” asserts Dr Sänger. “We believe that the changes that this new insight can bring to current training systems will have a considerable effect on the lives of both menopausal and older

———————————–
Article adapted by MD Sports from original press release.
———————————–

Notes to editors

  • Hypertrophy resistance training is a method of strength training that is designed to induce muscle growth, also known as hypertrophy.
  • SuperSlow® resistance training was developed by Ken Hutchins and is based on the same principle as hypertrophy resistance training, but involves slower movement and fewer repetitions of exercises, which is thought to improve the quality of muscle contraction and thereby strength.

Contact: Holly Astley
Society for Experimental Biology